Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 4 | 435-445

Article title

An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin


Title variants

Languages of publication



Recent studies in the area of biological air treatment in filters have addressed fundamental key issues, such as a biofilter bed of different origin composed of natural zeolite granules, foam cubes and wood chips. When foam and zeolite are mixed with wood chips to remove volatile organic compounds from the air, not only biological but also adsorption air purification methods are accomplished. The use of complex purification technologies helps to improve the efficiency of a filter as well as the bed service life of the filter bed. Investigations revealed that microorganisms prevailing in biological purification, can also reproduce themselves in biofilter beds of inorganic and synthetic origin composed of natural zeolite and foam. By cultivating associations of spontaneous microorganisms in the filter bed the dependencies of the purification efficiency of filter on the origin, concentration and filtration time of injected pollutants were determined. The highest purification efficiency was obtained when air polluted with acetone vapour was supplied to the equipment at 0.1 m/s of superficial gas velocity. When cleaning air from volatile organic compounds (acetone, toluene and butanol), under the initial pollutant concentration of ~100 mg/m3, the filter efficiency reached 95 %.









Physical description


1 - 12 - 2014
17 - 12 - 2014
18 - 3 - 2014
24 - 7 - 2014
30 - 9 - 2012


  • Vilnius Gediminas Technical University, Department of Environment Protection, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Department of Environment Protection, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania


  • Aizpuru A., Malhautier L., Roux J.C., Fanlo J.L., 2003. Biofiltration of a mixture of volatile organic compounds on granular activated carbon. Biotechnol. Bioeng., 83, 479-488, DOI: 10.1002/bit.10691.[Crossref]
  • Alvarez-Hornos F J., Gabaldón C., Martínez-Soria V., Marzal P., Penya-roja J.-M., Izquierdo M., 2007. Longterm performance of peat biofilters treating ethyl acetate, toluene, and its mixture in air. Biotechnol. Bioeng., 96, 651-660. DOI: 10.1002/bit.21096.[WoS][Crossref]
  • Amanullah A., Jüsten P., Davies A., Paul G.C., Nienow A.W., Thomas C.R., 2000. Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem. Eng. J., 5, 109-114. DOI: 10.1016/S1369-703X(99)00059-5.[Crossref][PubMed]
  • Baltrėnas P., Zagorskis A., 2010. Investigation into the air treatment efficiency of biofilters of different structures. J. Environ. Eng. Landscape Manage., 18 (1), 23-31. DOI: 10.3846/jeelm.2010.03.[WoS][Crossref]
  • Choi S.Ch., Oh Y.S., 2002. Simultaneous removal of benzene, toluene and xylenes mixture by a constructed microbial consortium during biofiltration. Biotechnol. Lett., 24, 1269-1275. DOI: 10.1023/A:1016273828254.[Crossref]
  • Cheng H., Reinhard M., 2006. Sorption of trichloroethylene in hydrophobic micropores of dealuminated y zeolites and natural minerals. Environ. Sci. Technol., 40, 7694-7701. DOI: 10.1021/es060886s.[Crossref]
  • Converti A., Del Borghi M., Zilli M., 1997. Evaluation of phenol diffusivity through Pseudomonas putida biofilms: application to the study of mass velocity distribution in a biofilter. Bioprocess Eng., 16, 105-114. DOI: 10.1007/s004490050296.[Crossref]
  • Delhomenie M.C., Bibeau L., Bredin N., Roy S., Broussau S., Brzezinski R., Kugelmass J.L., Heitz M., 2002. Biofiltration of air contaminated with toluene on a compost-based bed. Adv. Environ. Res., 6, 239-254, DOI: 10.1016/S1093-0191(01)00055-7.[Crossref]
  • Deshusses M.A., Johnson C.T., 1999. Biofiltration of hight loads of ethyl acetate in the presence of toluene. J. Air Waste Manage. Assoc., 49, 973-979, DOI: 10.1080/10473289.1999.10463869.[Crossref]
  • Dorado A.D., Baquerizo G., Maestre J. P., Gamisans X., Gabriel D., Lafuente J., 2008. Modeling of a bacterial and fungal biofilter applied to toluene abatement: Kinetic parameters estimation and model validation. Chem. Eng. J., 140, 52-61. DOI: 10.1016/j.cej.2007.09.004.[Crossref]
  • Dorado A.D., Lafuente F.J., Gabriel D., Gamisans X., 2010. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ. Technol., 31, 193-204, DOI: 10.1080/09593330903426687.[Crossref][PubMed][WoS]
  • Dorado A.D., Baeza J.A., Lafuente J., Gabriel D., Gamisans X., 2012a. Biomass accumulation in a biofilter treating toluene at high loads - Part 1: Experimental performance from inoculation to clogging. Chem. Eng. J., 209, 661-669. DOI: 10.1016/j.cej.2012.08.018.[Crossref]
  • Dorado A.D., Lafuente J., Gabriel D., Gamisans X. 2012b. Biomass accumulation in a biofilter treating toluene at high loads - Part 2: Model development, calibration and validation. Biochem. Eng. J., 209, 670-676, DOI: 10.1016/j.cej.2012.08.019.[Crossref]
  • Dorado A.D., Lafuente J., Gabriel D., Gamisans X., 2012c. Interaction between sorption and biodegradation in a biofilter packed with activated carbon. Water Sci. Technol., 66, 1743-1750. DOI:10.2166/wst.2012.384.[Crossref][WoS]
  • Gracy S., Hort C., Platel V., Gidas M.B. 2006. Volatile organic compounds (VOCs) biofiltration with two packing materials. Environ. Technol., 27 , 1053-1061. DOI: 10.1080/09593332708618719.[Crossref]
  • Hwang S.-J., Tang H.-M., 1997. Kinetic behavior of the toluene biofiltration process. J. Air Waste Manage. Assoc., 47, 664-673. DOI: 10.1080/10473289.1997.10463926.[Crossref]
  • Iliuta I., Larachi F. 2004. Transient biofilter aerodynamics and clogging for VOC degradation. Chem. Eng. Sci., 59, 3293-3302. DOI: 10.1016/j.ces.2004.05.004.[Crossref]
  • Jankevičius K., Liužinas R., 2003. Aplinkos biologinis valymas [Biological Cleaning of Environmental], Vilnius, p. 342.
  • Jantschak A., Daniels M., Paschold R., 2004. Biofilter technology: An innovative and cost-effective system to remove VOC. IEEE Trans. Semicond. Manuf., 17, 255-260. DOI: 10.1109/TSM.2004.831936.[Crossref]
  • Jeong E., Hirai, M., Shoda M. 2009. Removal of p-xylene with Pseudomonas sp. NBM21 in biofilter. J. Biosci. Bioeng., 102, 281-287. DOI: 10.1016/j.jbiosc.2009.03.024.[Crossref]
  • Jorio H., Jin Y., Elmrini H., Nikiema J., Brzezinski R., Heitz M., 2009. Treatment of VOCs in biofilters inoculated with fungi and microbial consortium. Environ. Technol., 30, 477-485. DOI: 10.1080/09593330902778849.[WoS][Crossref]
  • Malhautier L., Khammar N., Bayle S., Fanlo J.L., 2005. Biofiltration of volatile organic compounds. Appl.
  • Microbiol. Biotechnol., 68, 16-22. DOI: 10.1007/s00253-005-1960-z.[Crossref]
  • Morgado J., Merlin G., Gonthier Y., Eyraud A., 2004. A mechanistic model for m-xylene treatment with a peatbed biofilter. Environ. Technol., 25, 123-132. DOI: 10.1080/09593330409355444.[Crossref][PubMed]
  • Qi Bing, 2005. Biofiltration for treatment of gas-phase VOC mixtures. Ph.D. Dissertation, Louisiana State University, USA.
  • Qiang L., Babajide A.E., Ping Z., Lianpei Z., 2006. Removal of xylene from waste gases using biotrickling filters. Chem. Eng. Technol., 29, 320-325. DOI: 10.1002/ceat.200500132.[Crossref]
  • Schwarz B.C.E., Devinny J.S., Tsotsis T.T., 2001. A biofilter network model - Importance of the pore structure and other large-scale heterogeneities. Chem. Eng. Sci., 56, 475-483. DOI:10.1016/S0009-2509(00)00251-7.[Crossref]
  • Szwast M., Suchecka T., Piątkiewicz W., 2012. Mathematical model for biological cell deformation in a cylindrical pore. Chem. Process Eng., 33, 385-396. DOI: 10.2478/v10176-012-0034-x.[WoS][Crossref]
  • Trusek-Holownia A., Noworyta A., 2012. Biological regeneration of liquid sorbents after industrial purification of outlet gases. Chem. Process Eng., 33, 667-678. DOI: 10.2478/v10176-012-0056-4.[WoS][Crossref]
  • Tymczyna L., Chmielowiec-Korzeniowska A., Saba L., 2004. Biological treatment of laying house air with open biofilter use. Polish J. Environ. Stud., 13 (4), 425-428.
  • Vaiškūnaitė R., Baltrėnas P., Špakauskas V., 2005. Mathematical modeling of biofiltration in activated pine-bark charge of a biofilter. Environ. Sci. Pollut. Res., 12, 297-301. DOI: 10.1065/espr2004.12.234.[Crossref]
  • Vaiškūnaitė R., Miškinytė D., 2008. Temperature effects on biofiltration by varying biofilters parameters. The 7th International Conference Environmental Engineering, Vilnius, Lithuania, 19-20 May 2008, 423-432.
  • Vaiškūnaitė R., Navickaitė R, 2011. Evaluation of the performance with biofilter effectiveness treating volatile organic compounds under different pH value. The 8th International Conference Environmental Engineering, Vilnius, Lithuania, 19-20 May 2011, 416-424, available at: http://old.vgtu.lt/leidiniai/leidykla/Enviro2011/Articles/1/416_424_Vaiskunaite_others.pdf.
  • Wani A.H., Branion R.M.R., Lau A.K., 1997. Biofiltration: A promising and cost-effective control technology for odors, VOCs and air toxics. J. Environ. Sci. Health. Part A, 32, 2027-2055. DOI: 10.1080/10934529709376664.[Crossref]
  • Yamamoto T., Okubo M., Hung Y. T., Zhang R., 2005. Odor pollution control. Adv. Air Noise Pollut. Control, 2, 273-334. DOI: 10.1007/978-1-59259-6-8.[Crossref]
  • Yoon I.-K., Park C.-H., 2002. Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. J. Biosci. Bioeng., 93, 165-169. DOI: 10.1016/S1389-1723(02)80009-3.[Crossref]
  • Zilli, M., Palazzi E., Sene L., Converti A., Borghi M., 2001. Toluene and styrene removal from air in biofilters. Process Biochem., 37, 423-429. DOI: 10.1016/S0032-9592(01)00228-X. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.