Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 3 | 317-329
Article title

Energy Balance Sheet of a Semi Operational Thermic System

Title variants
Languages of publication
The article is focused onthe energetical balance of a technical system for the conversion of crushed tyres by pyrolysis. Process temperatures were set in the range from 500 to 650°C. Mass input of the material was 30 kg per hour. The aim of the article is to answer the following questions as regards the individual products: Under which process conditions can the highest quality of the individual products related to energy be reached? How does the thermal efficiency of the system change in reaction to various conditions of the process? On the basis of the experimental measurements and calculations, apart from other things, it was discovered that the pyrolysis liquid reaches the highest energetic value, i.e. 42.7, out of all the individual products of the pyrolysis process. Generated pyrolysis gas disposes of the highest lower calorific value 37.1 and the pyrolysis coke disposes of the maximum 30.9 MJ kg-1. From the energetic balance, the thermal efficiency of the experimental unit under the stated operational modes ranging from about 52 % to 56 % has been estimated. Individual findings are elaborated on detail in the article.
Physical description
1 - 9 - 2014
17 - 10 - 2014
19 - 3 - 2014
21 - 5 - 2013
30 - 4 - 2014
  • Boroska J., Molnar V., Fedorko G., Husakova N., 2007. Mining optimization indepence on the capacity of transport, In: Modern trends in underground construction. 163 - 167. Rudarsko-geolološki fakultet Univerziteta Beograd.
  • Conesa J.A., Marcilla A., Moral R., Moreno-Casselles J., Perez-Espinosa A., 1998. Evolution of gases in primary pyrolysis of different sewage sludge. Termochimica Acta, 313, 63-73. DOI: 10.1016/S0040-6031(97)00474-7.[Crossref]
  • Crespi M.S., Ribeiro C.A., Greenhalf V.C.M., Zorel J.R.H.M., 1999. Preparation and thermal decomposition of copper(II), zinc(II) and cadmium(II) chelates with 8-hydroxyquinoline. Quím. Nova, 22 (1). DOI: 10.1590/S0100-40421999000100009.[Crossref]
  • Fronts I., Azuara M., Gea G., Murillo M.B., 2009. Study of pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis, 85, 184-191. DOI: 10.1016/j.jaap.2008.11.003.[Crossref]
  • Guo R., Yang J., Liu D., Liu Z., 2002. Transformation behaviour of trace elements during coal pyrolysis. Fuel Process. Technol., 77-78, 137-143. DOI: 10.1016/S0378-3820(02)00041-3.[Crossref]
  • Guo R., Yang J., Liu D., Liu Z., 2003. The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis. J. Anal. Appl. Pyrolysis, 70, 555-562. DOI: 10.1016/S0165-2370(03)00025-1.[Crossref]
  • Helleur R., Popovic N., Ikura M., Stanciulescu M., Liu D., 2001. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J. Anal. Appl. Pyrolysis, 58-59, 813-824. DOI: 10.1016/S0165-2370(00)00207-2.[Crossref]
  • Inguanzo M., Domingguez A., Mendez J.A., Blanco C.G., Pis J.J., 2002. On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrolysis, 63, 209-222. DOI: 10.1016/S0165-2370(01)00155-3.[Crossref]
  • Jursová S., Pustějovská P., Brozova S., 2013. Energy exploitation of industrial waste. 22nd International Conference on Metallurgy and Materials, 15 - 17 May 2013, Brno, Czech Republic.
  • Koppe K., Juchelková D., 2011. Bioenergi - Handbuch. Ostrava.
  • Leung, D. Y. C., Yin X. L., Zhao Z. L., Xu B. Y., Chen, Y., 2002. Pyrolysis of tire powder: Influence of operation variables on the composition and yields of gaseous product. Fuel Process. Technol., 79, 141-155. DOI: 10.1016/S0378-3820(02)00109-1.[Crossref]
  • Lian Wang and Guomin Xiao, 2011. Study on economic feasibility of straw pyrolysis. International Conference on Materials for Renewable Energy & Environment (ICMREE). Shanghai, China, 20 - 22 May 2011.
  • Nowacky P., 1981. Coal gasification processes. Noyes Data Corporation/Noyes Publications, New Jersey.
  • Pastor M., Budayova M., Varga A., Suchy T., Fedorko G., Analysis of alternativ fuel - biomass gasifying at fluid reactor. 2nd International Symposium Meaning Energetic. Rudarsko-geolološki fakultet Univerziteta Beograd.
  • Quanyuan W., Yongshui Q., Tianwei, T., 2012. Mass and heat balance calculations and economic evaluation of an innovative biomass pyrolysis project. Front. Chem. Sci. Eng., 5, 355-361. DOI: 10.1007/s11705-010-0567-9.[Crossref]
  • Savu A., R., Muntean I., Lazea G., Agachi P., S., 2011. Economic optimization of a thermal cracker via Model Predictive Control technology. 19th Mediterranean Conference on Control and Automation Aquis. Corfu Holiday Palace, Corfu, Greece June 20-23, 2011.
  • Staf M., 2005. Research of thermic conversion of waste biomass to gaseous and liquid fuels, available at: (in Czech).
  • Vymětal J., Plesník M., 1994. Black coal tar and natural resin processing study manual. I. DEZA a.s. Valašské Meziříčí.
  • Xiqiang Zhao, Jian Zhang, Zhanlon Song, Hongzhen Liu, Longzhi Li, Chunyuan M., 2011. Microwave pyrolysis of straw bale and energy balance analysis. J. Anal. Appl. Pyrolysis, 92, 43 - 49. DOI: 10.1016/j.jaap.2011.04.004. [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.