Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 3 | 293-304

Article title

Cfd Analysis of Heat Transfer in a Microtubular Solid Oxide Fuel Cell Stack


Title variants

Languages of publication



The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.









Physical description


1 - 9 - 2014
1 - 11 - 2013
17 - 10 - 2014
23 - 5 - 2014
4 - 4 - 2014


  • West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland


  • Akhtar N., Decent S.P., Kendall K., 2010. Numerical modelling of methane-powered microtubular single chamber solid oxide fuel cell. J. Power Sources, 195, 7796-7807. DOI: 10.1016/j.powesourc.2010.01.084.[WoS][Crossref]
  • Akhtar N., 2012. Microtubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) stacks: Model development. Chem. Eng. Res. Des., 90, 814-824. DOI: 0.1016/j.cherd.2011/09/013.[WoS]
  • Amiri S., Hayes R. E., Nandakumar K., Sarkar P., 2013. Modelling heat transfer for a tubular micro-solid oxide fuel cell with experimental validation. J. Power Sources, 233, 190-201. DOI: 10.1016/j.jpowsourc.2013.01.070.[Crossref][WoS]
  • Andersson M., Yuan J., Sunden B., 2012. SOFC modeling considering electrochemical reactions at the active three phase boundaries. Intern. J. Heat Mass Transfer, 55, 773-788. DOI: 10.1016/j.ijheatmasstransfer.2011.10.032.[Crossref][WoS]
  • Cui D., Cheng M., 2009. Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC. AIChE J., 55, 3, 771-782. DOI: 10.1002/aic.11697.[Crossref][WoS]
  • Cui D., Liu L., Dong Y., Cheng M., 2007. Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling. J. Power Sources, 174, 246-254. DOI: 10.1016/j.powsourc.2007.08.094.[Crossref][WoS]
  • Doraswami U., Droushiotis N., Kelsall G.H., 2010. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells. Electrochim. Acta, 55, 3766-3778. DOI: 10.1016/j.electa.2010.01.080.[WoS][Crossref]
  • Howe K., Thompson G.J., Kendal K., 2011. Micro-tubular solid oxide fuel cells and stacks. J. Power Sources, 196, 1677-1686. DOI: 10.1016/j.jpowsour.2010.09.043.[Crossref]
  • Howe K. S., Hanifi A. R., Kendall K., Zazulak M., Etsell T. H., Sarkar P., 2013. Performance of microtubular SOFCs with infiltrated electrodes under thermal cycling, International Journal of Hydrogen Energy, 38, 1058-1067. DOI: 10.1016/j.ijhydene.2012.10.098.[WoS][Crossref]
  • Huang B., Qi Y., Murshed A.K.M.M., 2013. Dynamic modelling and predictive control in Solid Oxide Fuel Cells: First principle and data based approaches. 1st edition, John Wiley & Sons, 8, 193-211.
  • Lee S.B., Lim T.H., Song R.H., Shin D.R., Dong S.K., 2008. Development of a 700 W anode-supported microtubular SOFC stack for APU applications. Inter. J. Hydrogen Energy, 33, 2330-2336. DOI: 10.1016/j.ijhydene.2008.02.034.[Crossref]
  • Lockett M., Simmons M.J.H., Kendall K., 2004. CFD to predict temperature profiles for scale up of microtubular SOFC stacks. J. Power Sources, 131, 243-246. DOI: 10.1016/j.powsour.2003.11.082.[Crossref]
  • Morata A., Meadowcroft A., Torell M.,Kendall K., Kendall M., Tarancon A., 2014. Characterization of microtubular Solid Oxide Fuel Cells for mobile application. 11th European SOFC & SOE Forum, 1-4 July 2014, Lucerne, Switzerland.
  • Meier Ch., Hocker Th. Bieberle-Hutter A., Gauckler L., 2012. Analyzing a micro-solid oxide fuel cell system by global energy balances. Int. J. Hydrogen Energy, 37, 10318-10327. DOI: 10.1016/j.ijhydene.2012.04.009.[WoS][Crossref]
  • Milewski J., Świrski K., Santarelli M., Leone P., 2011. Advanced methods of Solid Oxide Fuel Cell modeling. Springer-Verlag London, 41-62. DOI: 10.1007/978-0-85729-262-9_3. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.