Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 2 | 163-172

Article title

Concentrations of Carbon Monoxide and Nitrogen Oxides From a 25 kW Boiler Supplied Periodically and Continuously with Wood Pellets



Title variants

Languages of publication



The impact of the fuel feeding mode (continuous or periodic with different stand-by/operation time ratios) on carbon monoxide (CO) and nitrogen oxides (NO, NOx) concentration values in the flue gas was analysed for coniferous wood pellet firing. Experiments were performed in a 25 kW water boiler equipped with an over-fed wood pellet furnace located in a full scale heat station simulating real-life conditions. Influence of oxygen concentration and temperature in the combustion chamber on carbon monoxide and nitrogen oxide concentrations was presented in diagrams. Dust and hydrocarbon concentrations were also monitored. It was concluded that the commonly used periodic fuel supply does not necessarily cause a significant increase of carbon monoxide concentration, as compared to the continuous fuel feeding mode. Continuous fuel supply can even induce higher carbon monoxide concentrations when fuel mass stream is not chosen properly. Each time new fuel type is used in a specific furnace, one should perform experiments to determine the adequate settings (stand-by/operation time ratio, fuel mass streams, air stream) to obtain the optimal, lowest possible emission for a certain boiler heat output









Physical description


1 - 6 - 2014
1 - 1 - 2014
10 - 7 - 2014
20 - 3 - 2013
27 - 12 - 2013


  • Poznan University of Technology, Institute of Environmental Engineering, Division of Heating, Air Conditioning and Air Protection, Piotrowo 3A, 60-965 Poznań, Poland


  • Boman C., Nordin A., Thaning L., 2003. Efects of increased biomass pellet combustion on ambient air quality in residential areas- a parametric dispersion modeling study. Biomass Bioenergy. 24, 465-474. DOI: 10.1016/S0961-9534(02)00146-0.[Crossref]
  • Boman C., Pettersson E., Westerholm R., Bostrom D., Nordin A., 2011. Stove Performance and emission characteristic in residential wood log and pellet combustion. Part1: Pellet stoves. Energy Fuels, 25, 307-314. DOI: 10.1021/ef100774x.[Crossref]
  • Fiedler F., 2004. The state of art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renewable Sustainable Energy Rev. , 8, 201-221. DOI: 10.1016/j.rser.2003.11.002.[Crossref]
  • Fiedler F., Bales C., Persson T., 2007. Optimization method for solar heating system in combination with pellet boilers/stoves. Int. J. Green Energy, 3, 325-337. DOI: 10.1080/15435070701332153.[Crossref][WoS]
  • Johansson L.S., Leckner B., Gustovsson L., Cooper D., Tullian C., Potter A., 2004. Emission characteristic of modern and old-type residential boilers fired with wood logs and wood pellets. Atm. Env., 38, 4183-4195. DOI: 10.1016/j.atmosenv.2004.04.020.[Crossref]
  • Juszczak M., 2010. Pollutant concentrations from a heat station supplied with pine wood logs. Chem. Process Eng., 31, 373-386.
  • Juszczak M., 2011. Pollutant concentrations from deciduous wood fuelled heat stations. Chem. Process Eng., 32, 41-45. DOI: 10.2478/v 10176-011-0004-8.[WoS][Crossref]
  • Kjallstrand J., Olsson M., 2004. Chimney emissions from small-scale burning of pellets and fuelwood - examples referring to different combustion appliances. Biomass Bioenergy. 27, 557-561. DOI: 1016/j.biombioe.2003.08.014.
  • Knaus H., Richter S., Unterberger S., Snell U., Maier H., Hein K.R.G., 2000. On the application of different turbulence models for the computation of flow and combustion process in small scale wood heaters. Exp. Therm. Fluid Sci., 21, 99-108. DOI: 10.1016/S0894-1777(99)00059-X.[Crossref]
  • Kubica K., 1999. Kryteria efektywności energetyczno-ekologicznej kotłów małej mocy i paliw stałych dla gospodarki komunalnej. Certyfikacja na znak bezpieczeństwa ekologicznego. Instytut Chemicznej Przeróbki Węgla.
  • Olsson M., Kjallstrand J., 2006. Low emission from wood burning in an ecolabelled residential boiler. Atmos. Environ., 40, 1148-1158. DOI:10.1016/j.atmosenv. 2005.11.008.[Crossref]
  • PN-EN 303-5: 2004. Heating boilers, Part 5. Heating boilers for solid fuels, hand and automatically stocked nominal heat output of up to 300 kW. Terminology, requirements and marking.
  • Poskrobko S., Łach J., Król D., 2010. Experimental investigation of hydrogen chloride bonding with calcium hydroxide in the furnace of a stoker-fired boiler. Energy Fuels, 24, 948-1957. DOI: 10.1021/ef901534d.[Crossref]
  • Poskrobko S., Łach J., Król D., 2010. Experimental investigation of hydrogen chlorine bonding with limestone and dolomite in the furnace of a stoker-fired boiler. Energy Fuels, 24, 5851-5858. DOI: 10.1021/ef101048k.[Crossref]
  • Poskrobko S., Łach J., Król D., 2012. Hydrogen chloride bonding with calcium hydroxide in combustion and two-stage combustion of fuels from waste. Energy Fuels, 26, 842-853. DOI: 10.1021/ef2016599.[WoS][Crossref]
  • Verma V.K., Bram S., Gautier G., De Ruyck J., 2011. Performance of a domestic pellet boiler as a function of operational loads: Part-2. Biomass Bioenergy, 35, 272-279. DOI: 10.1016/j.biombioe.2010.08.043.[Crossref][WoS]
  • Werther J., Saenger M., Hartge E. U., Ogada T., Siagi Z., 2006. Combustion of agricultural residues. Progress Energy Combus. Sci., 26, 1, 1-27. DOI: 10.1016/S0360-1285(99)00005-2.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.