Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 1 | 109-119

Article title

Operation of an Adsorption Chiller in Different Cycle Time Conditions

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper is devoted to application of adsorption process for cooling power generation in a cooling devices. Construction and working principle of a water-silica gel adsorption chiller has been presented and the basic refrigeration cycle has been discussed. The article outlines behavior of a single-stage adsorption system influenced by changes in cycle time. The effect of cycle time and inlet chilled water temperatures on the main system performance parameters has been analysed

Publisher

Year

Volume

35

Issue

1

Pages

109-119

Physical description

Dates

published
1 - 3 - 2014
accepted
13 - 2 - 2014
online
25 - 4 - 2014
received
28 - 5 - 2013

Contributors

  • Częstochowa University of Technology, Faculty of Environmental Engineering and Biotechnology, Institute of Advanced Energy Technologies, Dąbrowskiego 73, 42-200 Częstochowa, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Mickiewicza 30, 30-059 Kraków, Poland

References

  • Akisawa A., Miyazaki T., 2010. Multi-bed adsorption heat pump cycles and their optimal operation, In: Saha B.B., Ng K.C. (Eds.), Advances in Adsorption Technology, Nova Science Publishers, 241-279.
  • Aristov Y.I., Tokarev M.M., Freni A.,. Glaznev I.S, Restuccia G., 2006. Kinetics of water adsorption on silica Fuji Davison RD. Microporous Mesoporous Mater., 96, 65-71. DOI: 10.1016/j.micromeso.2006.06.008.[Crossref]
  • Asdrubali F., Grignaffini S., 2005. Experimental evaluation of the performances of a H2O-LiBr absorption refrigerator under different service conditions. Int. J. Refrig., 28, 489-497. DOI: 10.1016/j.ijrefrig.2004.11.006.[Crossref]
  • Chua H.T., Ng K.C., Wang W., Yap C., Wang, X.L., 2004. Transient modeling of a two-bed silica gel-water adsorption chiller. Int. J. Heat Mass Transfer, 47, 659-669. DOI: 10.1016/j.ijheatmasstransfer.2003.08.010.[Crossref]
  • Gräber M., Kirches C., Bock H.G., Shlöder J.P., Tegethoff W., Köhler J., 2011. Determining the optimum cyclic operation of adsorption chillers by a direct method for periodic optimal control. Int. J. Refrig., 34, 902-913. DOI: 10.1016/j.ijrefrig.2010.12.021.[WoS][Crossref]
  • Gordon J.M., Ng K.C., 2000. Cool Thermodynamics. Cambridge International Science Publishing.
  • Habib K., Saha B.B., Rahman K.A., Chakraborty A., Koyama S., Ng K.C., 2010. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs. Int. J. Refrig., 33, 706-713. DOI: 10.1016/j.ijrefrig.2010.01.006.[Crossref]
  • Loh W.S., 2010. Experimental and theoretical studies of waste heat driven pressurized adsorption chillers. PhD thesis. Department of Mechanical Engineering, National University of Singapore.
  • Loh W.S., Saha B.B., Chakraborty A., Ng K.C., Chun W.G, 2010. Performance analysis of waste heat driven pressurized adsorption chiller. J. Therm. Sci. Technol., 5, 252-265.[WoS][Crossref]
  • Loh W.S., El-Sharkawy I.I., Ng K.C., Saha B.B., 2009. Adsorption cooling cycles for alternative adsorbent/adsorbate pairs working at partial vacuum and pressurized conditions. Appl. Therm. Eng., 29, 793-798. DOI: 10.1016/j.applthermaleng.2008.04.014.[Crossref][WoS]
  • Miyazaki T., Akisawa A., Saha B.B., 2010. The performance analysis of a novel dual evaporator type three-bed adsorption chiller. Int. J. Refrig., 3, 276-285. DOI: 10.1016/j.ijrefrig.2009.10.005.[Crossref][WoS]
  • Myat A., Ng K.C., Thu K., Young-Deuk K., 2013. Experimental investigation on the optimal performance of zeolite-water adsorption chiller. Appl. Energy,102, 582-590. DOI: 10.1016/j.apenergy.2012.08.005.[Crossref]
  • Sekret R., Turski M., 2012. Research on an adsorption cooling system supplied by solar energy. Eng. Build., 51, 15-20. DOI: 10.1016/j.enbuild.2012.04.008.[Crossref]
  • Thu K., Ng K.C., Saha B.B., Chakraboty A., Koyama S., 2009. Operational strategy of adsorption desalination systems. Int. J. Heat Mass Transfer, 52, 1811-1816. DOI: 10.1016/j.ijheatmasstransfer.2008.10.012.[WoS][Crossref]
  • Thu K., Young-Deuk K.., Myat A., Chun W.G., NG K.C., 2013. Entropy generation analysis of an adsorption cooling cycle. Int. J. Heat Mass Transfer, 60, 143-155. DOI: 10.1016/j.ijheatmasstransfer.2012.12.055.[Crossref]
  • Wu D.W., Wang R.Z., 2006. Combined cooling, heating and power: A review. Prog. Energy Combust. Sci., 32, 459-95. DOI: 10.1016/j.pecs.2006.02.001. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_cpe-2014-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.