Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 1 | 75-96

Article title

Eulerian Three-Phase Flow Model Applied to Trickle-Bed Reactors


Title variants

Languages of publication



The majority of publications and monographs present investigations which concern exclusively twophase flows and particulary dispersed flows. However, in the chemical and petrochemical industries as well as in refineries or bioengineering, besides the apparatuses of two-phase flows there is an extremely broad region of three-phase systems, where the third phase constitutes the catalyst in form of solid particles (Duduković et al., 2002; Martinez et al., 1999) in either fixed bed or slurry reactors. Therefore, the goal of this study is to develop macroscopic, averaged balances of mass, momentum and energy for systems with three-phase flow. Local instantaneous conservation equations are derived, which constitute the basis of the method applied, and are averaged by means of Euler’s volumetric averaging procedure. In order to obtain the final balance equations which define the averaged variables of the system, the weighted averaging connected with Reynolds decomposition is used. The derived conservation equations of the trickle-bed reactor (mass, momentum and energy balance) and especially the interphase effects appearing in these equations are discussed in detail.









Physical description


1 - 3 - 2014
24 - 1 - 2014
25 - 4 - 2014
30 - 10 - 2013


  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Bałtycka 5, 44-100 Gliwice, Poland


  • Al-Dahhan M.H., Duduković M.P., 1994. Pressure drop and liquid holdup in high pressure trickle-bed reactors. Chem. Eng. Sci., 49, 5681-5698. DOI: 10.1016/0009-2509(94)00315-7.[Crossref]
  • Al-Dahhan M.H., Dudukovic M.P., 1996. Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors. AIChE J., 42, 2594-2606. DOI: 10.1002/aic.690420920.[Crossref]
  • Al-Dahhan M.H., Larachi F., Duduković M.P., Laurent A., 1997. High pressure trickle-bed reactors: a review. Ind. Eng Chem. Res., 36, 3292-3314. DOI: 10.1021/ie9700829.[Crossref]
  • Attou A., Ferschneider G., 2000. A two-fluid hydrodynamic model for the transition between trickle and pulse flow in cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci., 55, 491-511. DOI: 10.1016/S0009-2509(99)00344-9.[Crossref]
  • Bartelmus G., 1993. Solid-liquid mass transfer in a fixed-bed reactor with concurrent flow. Part II. Mathematical analysis for the pulsed flow regime. Chem. Eng. Process., 32, 65-74. DOI: 10.1016/0255-2701(93)87007-H.[Crossref]
  • Bartelmus G., Gancarczyk A., Stasiak M., 1998. Hydrodynamics of cocurrent fixed-bed three-phase reactors, the effect of physicochemical properties of the liquid on pulse velocity. Chem. Eng. Proc., 37, 331-341.[Crossref]
  • Bird R.B., Stewart W.E., Lightfoot E.N., 1960. Transport Phenomena. 1st edition, Wiley, New York, 555-585.
  • Boemer A., Qi H., Renz U., Vasquez S., Boysan F., 1995. Eulerian computation of fluidized bed hydrodynamics - a comparison of physical models. ASME FBC Conf., 2., 775-787.
  • Boure J.A., Delhaye J.M., 1982. Section 1, 2, In: Hetsroni G. (Ed.), Handbook of multiphase systems. McGraw Hill, New York, 1-36-1-95 .
  • Burghardt A., Bartelmus G., 2001. Chemical reactors engineering. PWN, Warsaw (in Polish).
  • Burghardt A., Bartelmus G., Gancarczyk A., 1999. Hydrodynamics of pulsing flow in three-phase catalytic reactors. Chem. Eng. Proc., 38, 441-426.
  • Burghardt A., Bartelmus G., Jaroszyński M., Kołodziej A., 1995. Hydrodynamics and mass transfer in a threephase fixed-bed reactor with concurrent gas-liquid flow. Chem. Eng. J., 58, 83-89. DOI: 10.1016/0923-0467(94)02956-3. [Crossref]
  • Burghardt A., Patzek T., 1983. Mass and energy transport in porous granular catalysts in multicomponent and multireaction systems. Int. Chem. Eng., 23, 739-751.
  • Cussler E.L., 1997. Diffusion and mass transfer in fluid systems. Cambridge University Press, Cambridge, Second Edition.
  • Delhaye J.M., Achard J.L., 1977. On the use of averaging operation in two-phase flow modeling. Thermal and hydraulic aspects of nuclear reactor safety 1: Light water reactors. ASME Winter Meeting.
  • Drew D.A., 1983. Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech., 15, 261-291. DOI: 10.1146/annurev.fl.15.010183.001401.[Crossref]
  • Drew D.A., Lahey R.T., 1993 Analytical modeling of multiphase flows, In: Roco M.C. (Ed.), Particulate twophase flow (Butterworth-Heinemann Series in Chemical Engineering), Butterworth-Heinemann, Boston, 509-566.
  • Duduković M. P., Larachi F., Mills P.L., 2002. Multiphase catalytic reactors: A perspective on concurrent knowledge and future trends. Catal. Rev., 44, 123-146. DOI: 10.1081/CR-120001460.[Crossref]
  • Duduković M.P., Larachi F., Mills P.L., 1996. Gas-solid and gas-liquid mass transfer coefficients. AIChE J., 42, 269-270. DOI: 10.1002/aic.690420124.[WoS][Crossref]
  • Dwivendi P.N., Upadhyah S.N., 1977. Particle fluid mass transfer in fixed and fluidized beds. Ind. Eng. Chem. Process Des. Dev., 16, 157-165. DOI: 10.1021/i260062a001.[Crossref]
  • Enwald H., Peirano E., Almsted A.E., 1996. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase Flow, 22, 21-66. DOI: 10.1016/S0301-9322(97)00005-0.[Crossref]
  • Froment G.F., Bischoff K.B., 1990. Chemical reactor analysis and design. John Wiley & Sons, New York.
  • Fukushima S., Kusaka K., 1977. Liquid-phase volumetric mass transfer coefficient and boundary of hydrodynamic flow region in packed column with concurrent downflow. J. Chem. Eng. Japan, 10, 468. DOI: 10.1252/jcej.10.468.[Crossref]
  • Gidaspow D., 1986. Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Appl. Mech. Rev., 39, 1-22.[Crossref]
  • Goto S., Smith J.M., 1975. Trickle-bed reactor performance. Part I. Holdup and mass transfer effects. AIChE J., 21, 706-713. DOI: 10.1002/aic.690210410.[Crossref]
  • Grosser K., Carbonell R.G., Sandaresan S., 1988. Onset of pulsing flow in two-phase cocurrent down flow through a packed bed. AIChE J., 34, 1850-1860. DOI: 10.1002/aic.690341111.[Crossref]
  • Haynes, jr. H.W., 1998. An explicit approximation of the effectiveness factor in porous heterogeneous catalyst. Chem. Eng. Sc., 41, 412-414. DOI: 10.1016/0009-2509(86)87022-1.[Crossref]
  • Holub R.A., Duduković M.P., Ramachandran P.A., 1992. A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci., 42, 2343 - 2348. DOI: 10.1016/0009-2509(92)87058-X.[Crossref]
  • Iliuta I., Larachi F., Grandjean P.B.A., Wild G., 1999. Gas-liquid interfacial mass transfer in trickle-bed reactors: State of the art correlations. Chem. Eng. Sci., 54, 5633-5644. DOI: 10.1016/S0009-2509(99)00129-3.[Crossref]
  • Ishii M., Hibiki T., 2011. Thermo-fluid dynamics of two-phase flow. 2nd Ed. Springer, New York. DOI: 10.1007/978-1-4419-7985-8.
  • Jackson R., 1977. Transport in porous catalysts. Elsevier, Amsterdam.
  • Jiang Y., Khadikar M.R., Al-Dahhan M.H., Duduković M.P., 1999. CFD modeling of multiphase flow distribution in catalytic packed bed reactors: Scale down issues. Catal. Today, 66, 209-218. DOI: 10.1016/S0009-2509(99)00129-3.[Crossref]
  • Lyczkowski R.W., 2010. The history of multiphase computational fluid dynamics. Ind. Eng. Chem. Res., 49, 5029-5036. DOI: 10.1021/ie901439y.[Crossref][WoS]
  • Martinez O.M., Casenello M.C., Cukierman A.L., 1994. Three-phase fixed bed catalytic reactors, application to hydrotreating processes, Trends in Chem. Eng., 2.
  • Mason E.A., Malinauskas A.P., 1983. Gas transport in porous media. Elsevier, Amsterdam.
  • Saez A.E., Carbonell R.G., 1985. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE J., 31, 52-63. DOI: 10.1002/aic.690310105.[Crossref]
  • Satterfield C.N., 1975. Trickle-bed reactors. AIChE J., 21, 209-228. DOI: 10.1002/aic.690210202.[Crossref][WoS]
  • Shah Y.T., 1979. Gas-liquid-solid reactor design. Mc Graw Hill, New York.
  • Sherwood T.K., Pigford R.L., Wilke Ch.R., 1975. Mass transfer. McGraw-Hill Book Company, New York.
  • Soo S.L., 1990. Multiphase fluid dynamics. Science Press, Gower Technical, New York. Szlemp A., Janecki D., Bartelmus G., 2001. Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems. Chem. Eng. Sci., 56, 1111-1116. DOI: 10.1016/S0009-2509(00)00328-6.[Crossref]
  • Tan C.S., Smith J.M., 1980. Catalyst particle effectiveness with unsymmetric boundary conditions. Chem. Eng. Sci., 35, 1601. DOI: 10.1016/0009-2509(80)80053-4.[Crossref]
  • Taylor R., Krishna R., 1993. Multicomponent mass transfer. John Wiley & Sons, Inc., New York.
  • Verein Deutscher Ingenieure, 2010. In: VDI-Gesellschaft Verfahrenstechnik und Chemie-Ingenieurwesen (GVC) (Ed.), VDI Heat Atlas. Springer-Verlag, Berlin-Heidelberg. DOI: 10.1007/978-3-540-77877-6.[Crossref]
  • Wammes W.J.A., Middelkamp J., Huisman W.J., deBaas C.M., Westerterp K.R., 1991. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures. AIChE J., 37, 1849-1862. DOI: 10.1002/aic.690371210.[Crossref]
  • Whitaker S., 1969. Advances in theory of fluid motion in porous media. Ind. Eng. Chem., 61, 14-28. DOI: 10.1021/ie50720a004.[Crossref]
  • Whitaker S., 1989. Heat transfer in packed bed catalytic reactors, In: Cheremisinoff N.P. (Ed.), Handbook of heat and mass transfer, Vol. 3: Catalysis, kinetics and reactor engineering. Gult Publishers Company, N.J .361-417.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.