Preferences help
enabled [disable] Abstract
Number of results
2014 | 35 | 1 | 3-18
Article title

Analysis of the Liquid Flow in a Vessel with a Rotating Disk at the Liquid Surface

Title variants
Languages of publication
This study is concerned with liquid flow induced by a disk which rotates steadily around its axis and touches the free surface of liquid contained in a cylindrical vessel. It is a simplified model of the flow in the inlet part of a vertical cooling crystallizer where a rotary distributor of inflowing solution is situated above the free surface of solution contained in the crystalliser. Numerical simulations of flow phenomena were conducted and the simulation results were interpreted assuming an analogy with Kármán’s theoretical equations. In a cylindrical coordinate system, the components of flow velocity were identified as functions of distance from the surface of the rotating disk. The experimental setup was developed to measure velocity fields, using digital particle velocimetry and optical flow. Conclusions concerning the influence of disc rotation on liquid velocity fields were presented and the experimental results were found to confirm the results of numerical simulation. On the basis of simulation data, an approximation function was determined to describe the relationship between the circumferential component of flow velocity and the distance from the disk.

Physical description
1 - 3 - 2014
25 - 4 - 2014
29 - 11 - 2013
29 - 9 - 2012
  • Warsaw University of Technology, Płock Campus, Institute of Mechanical Engineering, Department of Process Equipment, Jachowicza 2/4, Płock, Poland,
  • Carruthers J.R., Nassau K., 1968. Nonmixing cells due to crucible rotating during Czochralski crystal growth. J. Appl. Phys., 39, 5205-5214. DOI: 10.1063/1.1655943.[Crossref]
  • Escudier M.P., 1984. Observation of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids, 2, 189-196. DOI: 10.1007/BF00571864.[Crossref]
  • Hyun J.M., Leslie F., Fowlis W.W., Warn-Varnas A., 1983. Numerical solutions for spin-up from rest in cylinder. J. Fluid Mech., 127, 263-281. DOI: 10.1017/S0022112083002712.[Crossref]
  • Inamuro T., Yamaguchi A., Ogino F., 1997. Fluid flow in a rotating cylindrical container with a rotating disk at the fluid surface. Fluid Dyn. Res., 21, 417-430. DOI: 10.1016/S0169-5983(97)00020-8.[Crossref]
  • Jasmine H.A., Gajjar J.S.B., 2005. Absolute instability of the von Kármán, Bödewadt and Ekman flows between a rotating disc and a stationary lid. Phil. Trans. R. Soc. A, 363, 1131-1144. DOI: 10.1098/rsta.2005.1555.[Crossref]
  • Jones A.D.W., 1983. An experimental model of the flow in Czochralski growth. J. Cryst. Growth, 61, 235-244. DOI: 10.1016/0022-0248(83)90360-3.[Crossref]
  • Landau L.D., Lifshitz J.M., 2000. Fluid Mechanics, Volume 6 of course of theoretical physics. Butterworth- Heinemann, New Delhi.
  • Langlois W.E., 1977. Digital simulation of Czochralski bulk flow in a parameter range appropriate for liquid semiconductors. J. Cryst. Growth, 42, 386-399. DOI: 10.1016/0022-0248(77)90222-6.[Crossref]
  • Lingwood R.J., 1997. Absolute instability of the Ekman layer and related rotating flows. J. Fluid Mech., 331, 405-428. DOI: 10.1017/S0022112096004144.[Crossref]
  • Lugt H., Abboud M., 1987. Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. J. Fluid Mech., 179, 179-200. DOI: 10.1017/S0022112087001484.[Crossref]
  • Mihelčić M., Schroeck-Pauli C., Wingerath K., Wenzl H., Uelhoff W., Van Der Hart A., 1981. Numerical simulation of forced convection in the classical Czochralski method in ACRT and CACRT. J. Cryst. Growth, 53, 337-354. DOI: 10.1016/0022-0248(81)90083-X.[Crossref]
  • Ogino F., Kawai K., Mayumi K., 1993. Turbulent flow of liquid in a rotating vertical cylindrical container with a stationary solid cylinder at the liquid surface. 9th Symp. on Turbulent Shear Flows, Kyoto, Japan, August 16-18, 1993. Conference paper 3, 30-1.
  • Patankar S.V., 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.
  • Quénot G.M., Pakleza J., Kowalewski T.A., 1998. Particle image velocimetry with optical flow. Exp. Fluids, 25, 177-189. DOI: 10.1007/s003480050222.[Crossref]
  • Raffel M., Willert Ch. E., Kompenhans J., 1998. Particle Image Velocimetry. A Practical Guide. Springer-Verlag, Berlin.[WoS]
  • Ruiz X., Aguilo M., Massons J., Daiz F., 1991. Influence of dynamic boundary condition on the computed flow patterns inside a coaxial rotating disk-cylinder system. Comp. Fluids, 20, 387-398. DOI: 10.1016/0045-7930(91)90080-2.[Crossref]
  • Schouveiler L., Le Gal P., Chauve M.P., 2001. Instabilities of the flow between a rotating and a stationary disk. J. Fluid Mech., 443, 329-350. DOI: 10.1017/S0022112001005328.[Crossref]
  • Sørensen J.N., Christensen E.A., 1995. Direct numerical simulation of rotating fluid flow in a closed cylinder. Phys. Fluids, 7, 764-778. DOI: 10.1063/1.868600.[Crossref]
  • Suchecki W., 2000. The application of digital velocimetry to the visualisation of particle-laden flows. Zeszyty Naukowe Politechniki Opolskiej, 60, Mech. 254/2000, Opole, 319-326 (in Polish).
  • Suchecki W., 2001. Using the methods of optical flow analysis to verify numerical CFD models. Chem. Eng. Equip., 40, 8-12 (in Polish).
  • Suchecki W., Alabrudziński S., 2003. A metod of correcting flow velocity maps in digital particle image velocimetry, Chem. Eng. Equip., 42 (34), 14-20 (in Polish).
  • Suchecki W., 2006. Study of fluid motion in the tank apparatus equipped with a rotating disc, Chem. Eng. Equip. 45, 228-229 (in Polish).
  • Suchecki W., 2007. Visualisation of rotary liquid flows using optical tomography. Zeszyt Monograficzny Politechniki Gdańskiej, 4, Gdańsk, 23-32 (in Polish).
  • Suchecki W., 2008. Study of suspension flow by segment crystallizer model, In: Suchecki W. (Ed.), Wybrane zagadnienia przepływu płynów i wymiany ciepła. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, 23-57 (in Polish).
  • Von Kármán T., 1921. Über laminare und turbulente Reibung. J. Appl. Math. Mech., 1, 233-252. DOI: 10.1002/zamm.19210010401.[Crossref]
  • Warn-Varnas A., Fowlis W.W., Piasek S., Lee S.M., 1978. Numerical solutions and laser-Doppler measurements of spin-up. J. Fluid Mech., 85, 609-639. DOI: 10.1017/S0022112078000828.[Crossref]
  • Westerweel J. 1993. Digital particle image velocimetry - theory and application, Delft, Delft University Press.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.