Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 4 | 497-506

Article title



Title variants

Languages of publication



The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.









Physical description


1 - 12 - 2013
22 - 01 - 2014


  • Lodz University of Technology, Faculty of Process & Environmental Engineering,ul. Wólczańska 213, 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Process & Environmental Engineering,ul. Wólczańska 213, 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Process & Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Fertilizer Research Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
  • Fertilizer Research Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland


  • Bandische Anilin und Soda Fabrik, 1923. D.R. Patents 415, 686; 441, 433 and 462, 837.
  • Błasiak E., 1947. Patent PRL 34.000.
  • Chinchen G.C., Denny P.J., Spencer M.S., Whan D.A., 1987. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants. Appl. Catal., 30, 333. DOI: 10.1016/S0166-9834(00)84123-8.[Crossref]
  • Chinchen G.C., Spencer M.S., Waugh K.C., Whan D.A., 1987. Promotion of methanol synthesis and the watergas shift reactions by adsorbed oxygen on supported copper catalysts. J. Chem. Soc. Faraday Trans.1 ,83, 2193-2212. DOI: 10.1039/F19878302193.[Crossref]
  • Gao P., Li F., Zhan H., Zhao N., Xiao F., Wei W., Zhong L., Wang H., Sun Y., 2013. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol.
  • J. Catal., 298, 51-60. DOI: 10.1016/j.jcat.2012.10.030.[Crossref]
  • Guo X., Mao D., Lu G., Wang S., Wu G., 2011. The influence of La doping on the catalytic behavior of Cu/ ZrO2 for methanol synthesis from CO2 hydrogenation. J. Molecular Catal. A: Chem., 345, 60-68. DOI: 10.1016/j.molcata.2011.05.019.[Crossref]
  • Haldor Topsoe A/S, n.d. MK-121 High activity methanol synthesis catalyst [Brochure]. Retrieved 24.02.2013 from: http://www.topsoe.com/business_areas/gasification_based/~/media/PDF%20files/Methanol/Topsoe_methanol_mk%20121.ashx.
  • Kang S.-H., Bae J. W., Sai Prasad P.S., Oh J.-H., Jun K.-W., Song S.-L., Min K.-S., 2009. Influence of Ga addition on the methanol synthesis activity of Cu/ZnO catalyst in the presence and absence of alumina. J. Ind. Eng. Chem., 15, 665-669. DOI: 10.1016/j.jiec.2009.09.041.[Crossref]
  • Kotowski W., 1963. Betriebserfahrungen mit einem Kupferkatalysator bei der Methanolsynthese. Chemische Technik, 15, 204-205 (In German).
  • Kowalik P., Konkol M., Kondracka M., Próchniak W., Bicki R., Wiercich P., 2013. The CuZnZrAl hydroxycarbonates as copper catalyst precursors-Structure, thermal decomposition and reduction studies. Appl. Catal. A: Gen., 452, 139-146. DOI: 10.1016/j.apcata.2012.11.019.[Crossref]
  • Lange J.P., 2001. Methanol synthesis: a short review of technology improvements. Catal. Today, 64, 3-8. DOI: 10.1016/S0920-5861(00)00503-4.[Crossref]
  • Lu-xiang Z., Yongchun Z., Shaoyun C., 2011. Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol. J. Fuel Chem. Technol., 39, 912-927. DOI: 10.1016/S1872-5813(12)60002-4.
  • Lu-xiang Z., Yongchun Z., Shaoyun C., 2012. Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. A: Gen., 415- 416, 118-123. DOI: 10.1016/j.apcata.2011.12.013.
  • Petera J., Nowicki L., Ledakowicz S., 2013. New numerical algorithm for solving multidimensional heterogeneous model of the fixed bed reactor. Chem. Eng. J., 214, 237-246. DOI: 10.1016/j.cej.2012.10.020.[Crossref]
  • Poels Z.E.K., Brands D.S., 2000. Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction. Appl. Catal. A: Gen., 191, 83-96. DOI: 10.1016/S0926-860X(99)00307-5.[Crossref]
  • Rozovskii A.Ya., 1989. Modern problems in the synthesis of methanol. Russ. Chem. Rev. 58, 41. DOI: 10.1070/RC1989v058n01ABEH003425.[Crossref]
  • Sahibzada M., Metcalfe I.S., Chadwick D., 1998. Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversion. J. Catal., 174, 111-118. DOI: 10.1006/jcat.1998.1964.
  • Sanches S.G., Huertas Flores J., de Avillez R.R., Pais da Silva M.I., 2012. Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming. Int. J. Hydrogen Energy, 37, 6572-6579. DOI: 10.1016/j.ijhydene.2012.01.033.[Crossref]
  • Shahrokhi M., Baghmisheh G.R., 2005. Modeling, simulation and control of a methanol synthesis fixed-bed reactor. Chem. Eng. Sci., 60, 4275 - 4286. DOI: 10.1016/j.ces.2004.12.051.[Crossref]
  • Skrzypek J., Słoczynski J., Grabowski R., Olszewski P., Kozłowska A., Stoch J., Lachowska M., 2006. Effect of metal oxide additives on the activity and stability Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl. Catal. A: Gen., 310, 127-137. DOI: 10.1016/j.apcata.2006.05.035.[Crossref]
  • Skrzypek J., Słoczyński J., Ledakowicz S.,1994. Methanol synthesis science and engineering. PWN, Warszawa.
  • Szarawara J., Reychman K., 1980. Model kinetyczny niskociśnieniowej syntezy metanolu. Inż. Chem. Proces. 1, 331-344 (in Polish).
  • Toyir J., Ramirez de la Piscina P., Fierro José Luis G., 2001. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter. Appl. Catal. B: Env., 29, 207-215. DOI: 10.1016/S0926-3373(00)00205-8.[Crossref]
  • Vanden Bussche K.M., Froment G.F.,1996. A Steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal., 161, 1-10. DOI: 10.1006/jcat.1996.0156.[Crossref]
  • Wang F., Liu Y., Gan Y., Ding W., Fang W., Yang Y., 2013. Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process. Technol., 110, 190-196. DOI: 10.1016/j.fuproc.2012.12.012. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.