Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 4 | 449-462

Article title



Title variants

Languages of publication



An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.









Physical description


1 - 12 - 2013
22 - 01 - 2014


  • Indian Institute of Chemical Technology, Chemical Engineering Sciences Division, Process Dynamics and Control Group, Hyderabad – 500 007, India
  • Indian Institute of Chemical Technology, Chemical Engineering Sciences Division, Process Dynamics and Control Group, Hyderabad – 500 007, India
  • Chemical Engineering Department, Padmasri Dr BV Raju Institute of Technology, Narsapur- 502313, India


  • Beluham D., Gosak., D., Pavlovic N., Vampola M., 1995. Biomass estimation and optimal control of the bakers yeast fermentation process. Comp Chem. Eng., 19, S387-S392. DOI: 10.1016/0098-1354(95)87067-9.[Crossref]
  • Bryson A.E., Ho Y.C., Applied Optimal Control. 2nd ed. Blaiasdel, Waltham, 1975.
  • Catalina V., Gabriela E., 2007. Optimization of invertase production in a fed-batch bioreactor using simulation based dynamic programming coupled with a neural classifier. Comput. Chem. Eng. 31, 1131-1140. DOI:10.1016/j.compchemeng.2007.10.002.[WoS][Crossref]
  • Chen X., Pike R.W., Hertwig T.A., Hopper J.R., 1998. Optimal implementation of online optimization. Comp. Chem. Eng., 22, S435-S442. DOI:10.1016/S0098-1354(98)00085-4.[Crossref]
  • Fletcher R., Reeves C.M., 1964. Function minimization by conjugate gradients. Comp J., 7, 149-154. DOI:10.1093/comjnl/7.2.149.[Crossref]
  • Frédéric C., Sepulchre R.J., Jean-L.T., Philippe L., 2011. Improving the state estimation for optimal control of stochastic processes subject to multiplicative noise. Automatica, 47; 591-596. DOI: 10.1016/j.automatica.2011.01.026.[WoS][Crossref]
  • Gudi R.D., Shaw S.L., Gray H.L., 1994. Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements. Biotechnol. Bioeng, 44, 1272-1278. DOI: 10.1002/bit.260441102.[Crossref]
  • Hamer J.W., Richenberg C.B., 1988. On-line optimizing control of a packed bed immobilized - cell reactor. AIChE J., 34, 626-632. DOI: 10.1002/aic.690340412.[Crossref]
  • Harmon J., Svoronos S.A., Lyberatos G., 1987. Adaptive steady state optimization of biomass productivity in continuous fermentor. Biotechnol. Bioeng., 30, 335-344. DOI: 10.1002/bit.260300302.[Crossref]
  • Jang S., Joseph B., Mukai H., 1987. On-line optimization of constrained multivariable chemical processes. AIChE J., 33, 26-35. DOI: 10.1002/aic.690330105.[Crossref]
  • Jimmy A. L., Vero´N.B., Marcelo A.V., 2010. Application of dynamic optimization techniques for poly(β-hydroxybutyrate) production in a fed-batch bioreactor. Ind. Eng. Chem. Res., 49, 1762-1769. DOI: DOI: 10.1021/ie9006547[WoS][Crossref]
  • Jin W., Fan D., Luo Y., Chi L., Guo J., Zhang G., Zhu C., 2011. Optimizing the feeding operation of recombinant Escherichia coli during fed-batch cultivation based on Pontryagin's minimum principle. African J. Biotechnol., 10, 14143-14154.
  • Kim Y.H., Ham T.W., Kim J.B., 1991. On-line dynamic optimizing control of a binary distillation column. J. Chem. Eng. Jpn., 24, 51-57. DOI: 10.1252/jcej.24.51.[Crossref]
  • Lopez J.A., Bucala V.N., Villar M.A., 2010. Application of dynamic optimization techniques for poly(hydroxybutyrate) production in a fed-batch bioreactor. Ind. Eng.Chem. Res., 49, 1762-1769. DOI: 10.1021/ie9006547.[WoS][Crossref]
  • Noda M., Chida T., Hasebe S., Hasimoto I., 2000. On-line optimization system of pilot scale multi-effect batch distillation system. Comp. Chem. Eng., 24, 1577-1583. DOI: 10.1016/S0098-1354(00)00554-8.[Crossref]
  • Peroni C.V., Kaisare N.S., Lee J.H., 2005. Optimal control of a fed-batch bioreactor using simulation-based approximate dynamic programming. IEEE Trans. Contr. Syst. Technol., 13, 5, 786-790. DOI: 10.1109/TCST.2005.852105.[Crossref]
  • Rolf M.J., Lim H.C., 1985. Experimental adaptive on-line optimization of cellular productivity of a continuous bakers yeast culture. Biotechnol. Bioeng., 27:1236-1245. DOI: 10.1002/bit.260270820.[PubMed][Crossref]
  • Ryhiner G., Dunn I.J, Heinzle E., Rohani S., 1992. Adaptive on-line optimal control of bioreactors: application to anaerobic degradation. J. Biotechnol., 22, 89-106. DOI: 10.1016/0168-1656(92)90134-U.[Crossref]
  • Thomas I.M., Kiparissides C., 1984, Computation of the near-optimal temperature and initiator policies for a batch polymerization reactor. Can. J. Chem. Eng., 62, 284-291. DOI: 10.1002/cjce.5450620217.[Crossref]
  • Venkateswarlu Ch., Gangiah K., 1992. Dynamic modeling and optimal state estimation using extended Kalman filter for a kraft pulping digestor. Ind. Eng. Chem. Res., 31, 848-855. DOI: 10.1021/ie00003a029.[Crossref]
  • Venkateswarlu Ch., Avantika S., 2001. Optimal state estimation of mutlicomponent batch distillation. Chem. Eng. Sci., 56, 5771-5784. DOI: 10.1016/S0009-2509(01)00284-6.[Crossref]
  • Venkateswarlu Ch., K. Gangiah, Bhagavantha Rao M., 1992. Two level methods for incipient fault diagnosis in nonlinear chemical processes. Comput. Chem. Eng., 16, 463-476. DOI: 10.1016/0098-1354(92)85011-v.[Crossref]
  • Venkateswarlu Ch., 2004. Advances in monitoring and state estimation of bioreactors. J. Sci. Ind. Res., 63, 491-498. DOI:
  • Xie D.M., Liu D.H., Zhang J.A., 2001, Temperature optimization for glycerol production by batch fermentation with Candida krusei. J. Chem. Technol. Biotechnol., 76, 1057-1069. DOI: 10.1002/jctb.484.[Crossref]
  • Zho X.G., Liu L.H., Yuan W.K., 1999. Optimizing control of a wall-cooled fixed bed reactor. Chem. Eng. Sci., 54, 2739-2744. DOI: 10.1016/S0009-2509(98)00368. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.