Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 3 | 313-325

Article title

Modelling of Postproduction Suspensions’ Concentration Processes by “Batch” Membrane Microfiltration

Content

Languages of publication

EN

Abstracts

EN
The mathematical model of postproduction suspension concentration by microfiltration has been developed. This model describes a process conducted in a batch system with membrane washing by reverse flow of permeate. The model considerations concern filtration pseudocycles consisting of the filtration period and the membrane washing period. The balances of continuous phase volume, dispersed phase mass and energy, for each period of pseudocycle respectively, have been presented.

Publisher

Year

Volume

34

Issue

3

Pages

313-325

Dates

published
1 - 09 - 2013
online
08 - 10 - 2013

Contributors

author
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Institute for Sustainable Technologies – National Research Institute in Radom, ul. K. Pułaskiego 6/10, 26-600 Radom, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland

References

  • Chellam S., 2005. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci., 258, 35-42. DOI: 10.1016/j.memsci.2004.11.038.[Crossref]
  • Gan Q., Xue M., Rooney D., 2006. A study of fluid properties and microfiltration characteristics of room temperature ionic liquids [C10-min][NTf2] and N8881[NTf2] and their polar solvent mixtures. Sep. Purif. Technol., 51, 185-192. DOI:10.1016/j.seppur.2006.01.011.
  • Le Goff P., 1983. Optimization of the regenerative and replacement cycles of a catalyst. A very simple zero-order model. Intern. Chem. Eng., 23, 2, 225-237.
  • Hasan A., Peluso C.R., Hull T.S., Fieschko J., Chatterjee S.G., 2013. A surface-renewal model of cross-flow microfiltration. Braz. J. Chem. Eng., 30, 1, 167-186. DOI: 10.1590/S0104-66322013000100019.[Crossref][WoS]
  • Makardij A.A., Farid M.M., Chen X.D., 2002. A simple and effective model for cross-flow microfiltration and ultrafiltration. Can. J. Chem. Eng., 80, 28-36. DOI: 10.1002/cjce.5450800103.[Crossref]
  • Piątkiewicz W., 2012. Selected aspects of designing membrane filtration systems in the cross-flow. Scientific Publishing Houses of the Institute of for Sustainable Technologies - National Research Institute in Radom, Radom (in Polish).
  • Pohorecki R., Wroński S., 1977. Kinetics and thermodynamics of chemical engineering processes. WNT, Warsaw (in Polish).
  • Silva C.M., Reeve D.W., Husain H., Rabie H.R., Woodhouse K.A., 2000. Model for flux prediction in high-shear microfiltration systems. J. Membrane Sci., 173, 87-98. DOI: 10.1016/S0376-7388(00)00355-0.[Crossref]
  • Wang Z., Cui Y., Wu W., Ji S., Yao J., Zhang H., Zhao X., 2009. The convective model of flux prediction in a hollow-fiber module for a steady-state cross-flow microfiltration system. Desalination, 238, 192-209. DOI: 10.1016/j.desal.2008.02.013.[Crossref][WoS]

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_cpe-2013-0025