Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 2 | 293-307

Article title

Effect of Some Design Parameters on the Flow Fields and Power Consumption in a Vessel Stirred by a Rushton Turbine


Title variants

Languages of publication



Knowledge of the fluid dynamic characteristics in a stirred vessel is essential for reliable design and scale-up of a mixing system. In this paper, 3D hydrodynamics in a vessel agitated by a Rushton turbine were numerically studied (with the help of a CFD computer program (CFX 13.0)). The study was carried out covering a wide Reynolds number range: 104 - 105. Computations, based on control volume method, were made using the k-ε model. Our main purpose was to investigate the effect of vessel configuration and agitation rates on the flow structure and power consumption. Three types of vessels were used: unbaffled, baffled and a vessel with slots placed at the external perimeter of its vertical wall. The effect of slot length has been investigated. The comparison of our predicted results with available experimental data shows a satisfactory agreement.









Physical description


1 - 06 - 2013
09 - 07 - 2013


  • Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, USTO-MB 1505 El M’naouar, Oran, Algérie
  • Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, USTO-MB 1505 El M’naouar, Oran, Algérie
  • Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, USTO-MB 1505 El M’naouar, Oran, Algérie
  • Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, USTO-MB 1505 El M’naouar, Oran, Algérie
  • Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, USTO-MB 1505 El M’naouar, Oran, Algérie


  • Alcamo R., Micale G., Grisafi F., Brucato A., Ciofalo M., 2005. Large eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem. Eng. Sci., 60, 2303-2316. DOI: 10.1016/j.ces.2004.11.017.[Crossref][WoS]
  • Alopaeus V., Moilanen P., Laakkonen M., 2009. Analysis of stirred tanks with two-zone models. AIChE J., 55, 2545-5552. DOI: 10.1002/aic.11850.[Crossref][WoS]
  • Ameur H., Bouzit M., Helmaoui M., 2011. Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller. Chem. Process Eng., 32, 351-366. DOI: 10.2478/v10176-011-0028-0.[WoS][Crossref]
  • Baccar M., Abid M.S., 1999. Characterization of turbulent flow and heat transfer generated by anchor and gate in a stirred tank. Int. J. Therm. Sci., 38, 892-903. DOI: 10.1016/S1290-0729(99)80043-X.[Crossref]
  • Beshay K.R, Kratěna J., Fořt I., Bruha O., 2001. Power input of high-speed rotary impellers. Acta Polytechnica, 41, 18-23.
  • Bo W., Jieyu Z., Youduo H., Shengli A., 2006. Investigation on eccentric agitation in the stirred vessel using 3DLaser Doppler Velocimeter. Chinese J. Chem. Eng., 14, 618-625. DOI: 10.1016/S1004-9541(06)60124-9.[Crossref]
  • Bujalski W., Nienow A.W., Chatwin S., Cooke M., 1987. The dependency scale of power numbers of Rushton disc turbines. Chem. Eng. Sci., 42, 317-326. DOI: 10.1016/0009-2509(87)85061-3.[Crossref]
  • Chtourou W., Ammar M., Driss Z., Abid M.S., 2011. Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel. Cent. Eur. J. Eng., 1(4), 380-389. DOI: 10.2478/s13531-011-0039-0.[Crossref]
  • Ciofalo M., Brucato A., Grisafi F., Torraca N., 1996. Turbulent flow in closed and free-surface unbaffled tanks stirred by radial impellers. Chem. Eng. Sci., 51, 3557-3573. DOI: 10.1016/0009-2509(96)00004-8.[Crossref]
  • Doulgerakis Z., Yianneskis M., Ducci A., 2009. On the interaction of trailing and macro-instability vortices in a stirred vessel-enhanced energy levels and improved mixing potential. Chem. Eng. Res. Des., 87, 412-420. DOI: 10.1016/j.cherd.2008.12.019.[Crossref][WoS]
  • Ducci A., Yianneskis M., 2007. Vortex identification methodology for feed insertion guidance in fluid mixing processes. Chem. Eng. Res. Des., 85, 543-550. DOI: 10.1205/cherd06192.[WoS][Crossref]
  • Ducci A., Yianneskis M., 2007. Vortex tracking and mixing enhancement in stirred processes. AIChE J., 53, 305-315. DOI: 10.1002/aic.11076.[WoS][Crossref]
  • Escudie R., Bouyer D., Line A., 2004. Characterization of trailing vortices generated by a Rushton turbine. AIChEJ., 50, 75-86. DOI: 10.1002/aic.10007.[Crossref]
  • Escudie R., Line A., 2003. Experimental analysis of hydrodynamics in a radially agitated tank. AIChE J., 49, 585-603. DOI: 10.1002/aic.690490306.[Crossref]
  • Fentiman N.J., Lee K.C., Paul G.R., Yianneskis M., 1999. On the trailing vortices around hydrofoil impeller blades. Chem. Eng. Res. Des., 77, 731-742. DOI: 10.1205/026387699526700.[Crossref]
  • Gabriele A., Nienow A.W., Simmons M.J.H., 2009. Use of angle resolved PIV to estimate local specific energy dissipation rates for up-and down-pumping pitched blade agitators in a stirred tank. Chem. Eng. Sci., 64, 126-143. DOI: 10.1016/j.ces.2008.09.018.[Crossref][WoS]
  • Galletti C., Brunazzi E., Yianneskis M., Paglianti A., 2003. Spectral andwavelet analysis of the flow pattern transition with impeller clearance variations in a stirredvessel. Chem. Eng. Sci., 58, 3859-3875. DOI: 10.1016/S0009-2509(03)00230-6.[Crossref]
  • Haque J.N., Mahmud T., Roberts K.J., Rhodes D., 2006. Modelling turbulent flows with free-surface in unbaffled agitated vessels. Ind. Eng. Chem. Res., 45, 2881-2891. DOI: 10.1021/ie051021a.[Crossref]
  • Jing Z., Zhengming G., Yuyun B., 2011. Effects of the blade shape on the trailing vortices in liquid flow generated by disc turbines. Chinese J. Chem. Eng., 19, 232-242. DOI: 10.1016/S1004-9541(11)60160-2.[Crossref][WoS]
  • Kresta S.M., Wood P.E., 1991. Prediction of the three-dimensional turbulent flow in stirred tanks. AIChE J., 37, 448-460. DOI: 10.1002/aic.690370314.[Crossref]
  • Kumaresan T., Joshi J.B., 2006. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J., 115, 173-193. DOI:10.1016/j.cej.2005.10.002.[Crossref]
  • Luo J.Y., Gosman A.D., Issa R.I., Middleton J.C., Fitzgerald M.K., 1993. Full flow field computation of mixing in baffled stirred vessels. Chem. Eng. Res. Des., 71, 342-344.
  • Mahmud T., Haque J.N., Roberts K.J., Rhodes D., Wilkinson D., 2009. Measurements and modelling of freesurface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor. Chem. Eng. Sci., 64, 4197-4209. DOI:10.1016/j.ces.2009.06.059.[WoS][Crossref]
  • Mavros P., 2001. Flow visualization in stirred vessels a review of experimental techniques. Chem. Eng. Res. Des., 79, 113-127. DOI: 10.1205/02638760151095926.[Crossref]
  • Myers K.J., Reeder M.F., Fasano J.B., 2002. Optimize mixing by using the proper baffles. Chem. Eng. Prog., 91, 42-47.
  • Naude I., 1998. Direct simulations of impellers in a stirred tank. Contribution to the optimization of the choice ofan agitator. Ph.D. thesis. INPT, France.
  • Nikiforaki L., Montante G., Lee K.C., Yianneskis M., 2003. On the origin, frequency and magnitude of macroinstabilities of the flows in stirred vessels. Chem. Eng. Sci., 58, 2937- 2949. DOI:10.1016/S0009-2509(03)00152-0.[Crossref]
  • Ranade V.V., 1997. An efficient computational model for simulating flow in stirred vessels: A case of Rushton turbine. Chem. Eng. Sci., 52, 4473-4484. DOI: 1016/S0009-2509(97)00292-3.
  • Roy S., Acharya S., Cloeter M.D., 2010. Flow structure and the effect of macro-instabilities in a pitched-blade stirred tank. Chem. Eng. Sci., 65, 3009-3024. DOI: 10.1016/j.ces.2010.01.025.[WoS][Crossref]
  • Stoots C.M., Calabrese R.V., 1995. Mean velocity field relative to a Rushton turbine blade. AIChE J., 41, 1-11. DOI: 10.1002/aic.690410102.[Crossref]
  • Torré J.P., Fletcher D.F., Lasuye T., Xuereb C., 2007. An experimental and computational study of the vortex shape in a partially baffled agitated vessel, Chem. Eng. Sci., 62, 1915- 1926. DOI:10.1016/j.ces.2006.12.020.[Crossref][WoS]
  • Wu H., Patterson G.K., 1989. Laser-Doppler measurements of turbulent flow parameters in a stirred mixer. Chem. Eng. Sci., 44, 2207-2221. DOI: 10.1016/0009-2509(89)85155-3.[Crossref]
  • Yeoh S.L., Papadakis G., Yianneskis M., 2004. Numerical simulation of turbulent flow characteristics in a stirred vessel using the LES and RANS approaches with the sliding deforming mesh methodology. Chem. Eng. Res. Des., 82, 834-848. DOI: 10.1205/0263876041596751.[Crossref]
  • Yoon H.S., Hill D.F., Balachandar S., Adrian R.J., Ha M.Y., 2005. Reynolds number scaling of flowin a Rushton turbine stirred tank. Part I-Mean flow, circular jet and tip vortex scaling. Chem. Eng. Sci., 60, 3169-3183. DOI: 10.1016/j.ces.2004.12.039.[Crossref]
  • Yoon H.S., Sharp K.V., Hill D.F., Adrian R.J., Balachandar S., Ha M.Y., Kar K., 2001. Integrated experimental and computational approach to simulation of flow in a stirred tank. Chem. Eng. Sci., 56, 6635-6649. DOI: 10.1016/S0009-2509(01)00315-3.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.