Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 2 | 253-267

Article title

Treatment of Wastewater to Meet the Requirements for Cooling Water Systems in Jordan’s Nuclear Plants


Title variants

Languages of publication



Scaling and corrosion associated with the use of natural hard water in cooling towers during recirculation pose great problems from both economical and technical points of view, such as decreased system efficiency and increased frequency of chemical cleaning. Treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. In this work, hybrid systems of salt precipitation (SP), nanofiltration (NF) and reverse osmosis (RO) were investigated, as potential pretreatment processes for wastewater reuse as cooling water in the planned Jordan nuclear power plants. The As-Samra wastewater was used to calculate the potential of carbonate and sulfate scale formation. The results were compared to scale potentials from Palo Verde wastewater. Four cases were investigated; SP, NF, SP-RO and NF-RO. The SP pretreatment cases showed the highest monovalent to divalent ratio because of a high removal of Ca and Mg and addition of Na from the chemicals of the SP step. The NF pretreatment cases, showed the lowest calcium sulfate scale potential and this potential decreases with the % pretreatment. The scale amount increases very slightly with concentration times when the SP and NF product is desalinated by RO step.









Physical description


1 - 06 - 2013
09 - 07 - 2013


  • Tafila Technical University (TTU), P.O. Box 179, 66110 Tafila, Jordan
  • Jordan Atomic Energy Commission (JAEC), P.O. Box 70, Shafa Badran 11934, Amman, Jordan
  • Jordan Atomic Energy Commission (JAEC), P.O. Box 70, Shafa Badran 11934, Amman, Jordan


  • Al-Rawajfeh A.E., 2007. Modelling of alkaline scale formation in falling-film horizontal-tubes multiple-effect distillers. Desalination, 205, 124-139. DOI: 10.1016/j.desal.2006.04.044.[Crossref][WoS]
  • Al-Rawajfeh A.E., 2008. Simultaneous desorption-crystallization of CO2-CaCO3 in multistage flash (MSF) distillers. Chem. Eng. Proc., Proc. Inten., 47 2262-2269. DOI: 10.1016/j.cep.2007.12.004.[Crossref]
  • Al-Rawajfeh A.E., Al Zarooni M., 2008. New processes in seawater desalination. Recent Patents Chem. Eng., 1, 141-150. DOI: 10.2174/2211334710801020141.[Crossref]
  • Al-Rawajfeh A.E., Al-Garalleh M., Al-Mazaideh G., Al-Rawashdeh B., Khalil S., 2008. Understanding CaCO3- Mg(OH)2 scale formation: A semiempirical MINDO-Forces study of CO2-H2O system. Chem. Eng. Comms., 195, 998-1010. DOI: 10.1080/00986440801906922.[Crossref][WoS]
  • Al-Rawajfeh A.E., Al-Amaireh M.N., 2009. The influence of CO2 injection on the carbonate chemistry and scaling in multiple-effect distillers. Desalination Water Treat., 7, 191-197. DOI: 10.5004/dwt.2009.700.[Crossref]
  • Al-Rawajfeh A.E., 2010. Influence of seawater composition on CO2 release and scaling in multi-stage flash (MSF) distillers from different arabian gulf intakes. IJCEA, 1, 43-48. DOI: 10.7763/IJCEA.2010.V1.8.[Crossref]
  • Al-Rawajfeh A.E., 2011. Influence of nanofiltration pretreatment on scale deposition in multi-stage flash thermal desalination plants. Thermal Sci., 15, 55-65. DOI: 10.2298/TSCI091223053R.[WoS][Crossref]
  • Al-Rawajfeh A.E., Fath H.E.S., Mabrouk A.A., 2012. Integrated salts precipitation and nano filtration as pretreatment of multi stage flash desalination system. Heat Transfer Eng. 33, 272-279. DOI: 10.1080/01457632.2011.562776.[WoS][Crossref]
  • Al-Rawajfeh A.E., 2012. Hybrid salts precipitation-nanofiltration pretreatment of MSF and RO seawater desalination feed. Membrane Water Treatment 3, 253-266.
  • Altman S.J., Jensen R.P., Cappelle M.A., Sanchez A.L., Everett R.L., Anderson Jr. H.L., McGrath L.K., 2012. Membrane treatment of side-stream cooling tower water for reduction of water usage. Desalination, 285, 177-183. DOI: 10.1016/j.desal.2011.09.052.[Crossref]
  • Antony A., Low J.H., Gray S., Childress A.E., Le-Clech P., Leslie G., 2011.Scale formation and control in high pressure membrane water treatment systems: A review. J. Membrane Sci., 383, 1- 16. DOI: 10.1016/j.memsci.2011.08.054.[Crossref]
  • Chan S.H., Ghassemi K.F., 1991a. Analytical modeling of calcium carbonate deposition for laminar falling films and turbulent flow in annuli: Part I - Formulation and single-species model. J. Heat Transf., 113, 735-740. DOI: 10.1115/1.2910625.[Crossref]
  • Chan S.H., Ghassemi K.F., 1991b. Analytical modeling of calcium carbonate deposition for laminar falling films and turbulent flow in annuli: Part II - Multispecies model. J. Heat Transf., 113, 741-746. DOI: 10.1115/1.2910626.[Crossref]
  • Cowan J.C., Weintritt D.J., 1976. Water-formed scale deposits. Gulf Publishing Company, Houston, TX. 412-413.
  • El-Manharawy S., Hafez A., 2000. Molar ratios as useful tool for prediction of scaling potential inside ROsystem. Desalination, 136, 243-254. DOI: 10.1016/S0011-9164(01)00187-4.[Crossref]
  • El-Manharawy S., Hafez A., 2002. Dehydration model for RO-membrane fouling prediction. Desalination, 153, 95-107. DOI: 10.1016/S0011-9164(02)01109-8.[Crossref]
  • El-Manharawy S., Hafez A., 2011. How to estimate inorganic fouling flux on RO membrane by using ROIFA-4? Desalination, 277, 407-413. DOI: 10.1016/j.desal.2011.04.015.[Crossref]
  • El-Wakil M.M., 1984. Powerplant Technology. McGraw-Hill, New York.
  • El-Zanati E., El-Khatib K.M., 2007. Integrated membrane-based desalination system. Desalination, 205, 15-25. DOI: 10.1016/j.desal.2006.03.548.[Crossref]
  • Fritzmann C., Loewenberg J., Wintgens T., Melin T., 2007. State-of-the-art of reverse osmosis desalination. Desalination, 216, 1-76. DOI: 10.1016/j.desal.2006.12.009.[Crossref]
  • Hasson D., Perl I., 1981. Scale deposition in a laminar falling-film system. Desalination, 7, 279-292. DOI: 10.1016/S0011-9164(00)88652-X.[Crossref]
  • Hussain A.A., Al-Rawajfeh A.E., 2009. Recent patents on nanofiltration applications in oil processing, desalination, wastewater and food industries. Recent Patents Chem. Eng., 2, 51-66. DOI: 10.2174/2211334710902010051.[Crossref]
  • Hussain A.H., 2007. Process for pre-treating and desalinating seawater. US patent No. 7198722.
  • Kavitha A.L., Vasudevan T., Gurumallesh Prabu H., 2011. Evaluation of synthesized antiscalants for cooling water system application. Desalination, 268, 38-45. DOI: 10.1016/j.desal.2010.09.047.[WoS][Crossref]
  • Kim W., Cho Y.I., 2011. Benefit of filtration in physical water treatment for the mitigation of mineral fouling in heat exchangers. Int. Comm. Heat Mass Transf., 38, 1008-1013. DOI: 10.1016/j.icheatmasstransfer.2011.05.008[WoS][Crossref]
  • Li H., Hsieh M.K., Chien S.H., Monnell J.D., Dzombak D.A., Vidic R.D., 2011. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater. Water Res., 45, 748 -760. DOI: 10.1016/j.watres.2010.08.052.[Crossref]
  • Liu W., Chien S.H., Dzombak D.A., Vidic R.D., 2012. Mineral scaling mitigation in cooling systems using tertiary-treated municipal wastewater. Water Res., 46, 4488-4498. DOI: 10.1016/j.watres.2012.05.041.[Crossref]
  • Nanda D., Tung K.L., Hsiung C.C., Chuang C.J., Ruaan R.C., Chiang Y.C., Chen C.S., Wu T.H., 2008. Effect of solution chemistry on water softening using charged nanofiltration membranes. Desalination, 234, 344-353. DOI: 10.1016/j.desal.2007.09.103.[WoS][Crossref]
  • Skillman H.L., McDonald J.P., Stiff H.A., 1969. A simple, accurate, fast method for calculating calcium sulfate solubility in oil field brine. Spring Meeting of the Southwestern District, Division of Production, American Petroleum Institute, Lubbock, Texas. Paper No. 906-14-I.
  • Snoeyink V.L., Jenkins D., 1982. Water Chemistry. Wiley, New York.
  • Wang J., Qu D., Tie M., Ren H., Peng X., Luan Z., 2008. Effect of coagulation pretreatment on membrane distillation process for desalination of recirculating cooling water. Sep. Purif. Technol., 64, 108-115. DOI: 10.1016/j.seppur.2008.07.022.[WoS][Crossref]
  • Yang Y., Kim H., Starikovskiy A., Fridman A., Cho Y.I., 2010. Application of pulsed spark discharge for calcium carbonate precipitation in hard water. Water Res., 44, 3659-3668. DOI: 10.1016/j.watres.2010.04.024.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.