Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 34 | 1 | 139-152

Article title

Effect of Impeller Shape on Solid Particle Suspension

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper deals with the effect of impeller shape on off-bottom particle suspension. On the basis of numerous suspension measurements, correlations are proposed for calculating the just-suspended impeller speed for a standard pitched four-blade turbine and three types of hydrofoil impellers produced by TECHMIX for several particle sizes and for a wide range of particle concentrations. The suspension efficiency of the tested impellers is compared with the efficiency of a standard pitched blade turbine on the basis of the power consumption required for off-bottom suspension of solid particles. It is shown that the standard pitched blade turbine needs highest power consumption, i.e. it exhibits less efficiency for particle suspension than hydrofoil impellers produced by TECHMIX.

Publisher

Year

Volume

34

Issue

1

Pages

139-152

Physical description

Dates

published
1 - 03 - 2013
online
02 - 04 - 2013

Contributors

  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 166 07 Prague 6, Czech Republic
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 166 07 Prague 6, Czech Republic
author
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 166 07 Prague 6, Czech Republic
  • TECHMIX s.r.o., Křižíkova 70, 612 00 Brno, Czech Republic

References

  • Ceres D., Jirout T., Rieger F., Seichter P., 2008. Effect of impeller blade shape on particle suspension. Czasopismo Techniczne. Mechanika, 2-M, 105, 57-65 (in Russian).
  • Ceres D., 2010. Mixing of suspensions. Ph.D. Disertation. Czech Technical University in Prague (in Czech).
  • Ditl P., Rieger F., 2006. Designing suspension-mixing systems. CEP, 102, 22-30.
  • Fořt I., Kysela B., Jirout T., 2010. Flow characteristics of axial high speed impellers. Chem. Process Eng., 31, 661-679.
  • Kassat G.R., Pandit A.B., 2005. Review on mixing characteristics in solid-liquid and solid-liquid-gas reactor vessels. Can. J. Chem. Eng., 83, 618-643. DOI: 10.1002/cjce.5450830403.[Crossref]
  • Einenkel W.D., 1980. Influence of physical properties and equipment design on the homogeneity of suspensions in agitated vessels. Ger. Chem. Eng., 3, 118-124.
  • Rieger F., Sinevič V., 1980. Suspension of solid particles. Colect. Czech. Chem. Commun., 95, 966-968.
  • Jirout T., Rieger F., 2009. Scale-up of mixing equipment for suspensions. Chem. Process Eng., 30, 359-367 Jirout T., Moravec J., Rieger F., Sinevič V., Špidla M., Sobolík V., Tihon J., 2005. Electrochemical measurement of impeller speed for off-bottom suspension. Chem. Process Eng., 26, 485-497.
  • Jirout T., Rieger F., 2011. Impeller design for mixing of suspensions. Chem. Eng. Res. Des., 89, 1144-1151. DOI: 10.1016/j.cherd.2010.12.005.[Crossref][WoS]
  • Rieger F., 1993. Efficiency of agitators while mixing of suspensions. 6th Polish Seminar on Mixing, Kraków, Zakopane, 79-85.
  • Rieger F., 2000. Effect of particle content on agitator speed for off-bottom suspension. Chem. Eng. J., 79, 171-175. DOI: 10.1016/S1385-8947(00)00171-6.[Crossref]
  • Rieger F., Ditl P., 1994. Suspension of solid particles. Chem. Eng. Sci., 49, 2219-2227. DOI: 10.1016/0009-2509(94)E0029-P.[Crossref]
  • Zwietering Th.N., 1958. Suspending of solid particles in liquid by agitators. Chem. Eng. Sci., 8, 244-253. DOI: 10.1016/0009-2509(58)85031-9.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_cpe-2013-0012
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.