Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 1 | 7-24

Article title

Enhancing photocell power by noise-induced coherence

Content

Title variants

Languages of publication

EN

Abstracts

EN
We show that coherence induced by Fano interference can
enhance the power produced by photovoltaic devices, e.g. photodetectors and solar cells, as compared to the same
system with no coherence. No additional external energy
source is necessary to create such induced coherence. In
the present model, coherence generated by photocurrent increases
(for optically thin cells) the flow of electrons through
the load, which reduces radiative recombination and enhances
cell power. We discuss two schemes in which coherence
is generated between upper or lower energy levels. We
also study the influence of decoherence, τa, on cell power and
show that one can design a device with Fano enhancement
even at relatively large decoherence rates. Finally we investigate
the effect of ambient temperature Ta on the cell power
in a scheme with no interference and show that for certain
parameters power can be increased by increasing Ta.

Keywords

EN

Publisher

Year

Volume

1

Pages

7-24

Physical description

Dates

accepted
14 - 12 - 2012
online
27 - 12 - 2012
received
9 - 11 - 2012

Contributors

  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
  • University of California, Irvine, CA 92697
  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
  • Baylor University, Waco, TX 76706

References

  • P. Würfel, Physics of Solar Cells (Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim) 2009.
  • W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510(1961).
  • J. Nelson, The Physics of Solar Cells (Imperial CollegePress) p. 38 (2003).
  • P. Würfel, Chimia 61, 770 (2007).
  • R.C. Tolman, The Principles of Statistical Mechanics(Oxford University Press, London, UK) 1938.
  • R.H. Fowler, Statistical Mechanics. The Theory of theProperties of matter in Equilibrium (Cambridge UniversityPress, Cambridge, UK) 1996.
  • M.O. Planck, Annalen der Physik 4, 553 (1901).[Crossref]
  • A. Einstein, Annalen der Physik 17, 132 (1905).[Crossref]
  • A. Einstein, Physikalische Zeitschrift 18, 121 (1917).
  • M. Sargent, M.O. Scully and W. Jr. Lamb, LaserPhysics (Addison-Wesley, Reading, Mass.) 1974.
  • J.P. Gordon, H.J. Zeiger and C.H. Townes, Phys. Rev.95, 282 (1957).
  • H.E.D. Scovil and E.O. Schulz-DuBois, Phys. Rev.Lett. 2, 262 (1959).
  • For review articles on LWI theory and concepts seeO. Kocharovskaya, Phys. Rep. 219, 175 (1992); S.Harris, Phys. Today 50, 36 (1997).[Crossref]
  • M.O. Scully and M.S. Zubairy, Quantum Optics(Cambridge University Press, Cambridge, UK) 1997.
  • M. Fleischhauer, A. Imamoglu and J.P. Marangos, Rev.Mod. Phys. 77, 633 (2005).
  • W.W. Chow, H.C. Schneider and M.C. Phillips, Phys.Rev. A 68, 053802 (2003).
  • W.W. Chow, S. Michael and H.C. Schneider, J. Mod.Opt. 54, 2413 (2007).
  • A.A. Belyanin, F. Capasso, V.V. Kocharovsky, Vl.V.Kocharovsky and M.O. Scully, Phys. Rev. A 63,053803 (2001).
  • The quantum photon engine is treated in M.O. Scully,S. Zubairy, G. Agarwal and H. Walther, Science 299,862 (2003). The classical photon heat engine is nicelydiscussed in M.H. Lee, Am. J. Phys. 69, 874 (2001).
  • M.O. Scully, Phys. Rev. Lett. 106, 049801 (2011);arXiv:1012.5321v2 [quant-ph].
  • M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010).[PubMed]
  • K.E. Dorfman, M.B. Kim, A.A. Svidzinsky, Phys. Rev.A 84, 053829 (2011).
  • A. Kirk, Phys. Rev. Lett. 106, 048703 (2011).[PubMed]
  • S. Harris, Phys. Rev. Lett. 62, 1033 (1989).[PubMed]
  • U. Fano, Phys. Rev. 124, 1866 (1961).
  • G. Agarwal, Quantum Statistical Theories of SpontaneousEmissions and Their Relation to other ApproachesSpringer Tracts in Modern Physics Vol. 70(Springer, Berlin) 1974.
  • W. Schleich, Quantum Optics in Phase Space (Wiley-VCH) 2002.
  • A.A. Svidzinsky, K.E. Dorfman and M.O. Scully, Phys.Rev. A 84, 053818 (2011).
  • M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kimand A.A. Svidzinsky, PNAS 108, 15097 (2011).[Crossref]
  • H. Schmidt, K.L. Campman, A.C. Gossard and A.Imamoglu, Appl. Phys. Lett 70, 3455 (1997).
  • J. Faist, F. Capasso, C. Sirtori, K.W. West and L.N.Pfeifer, Nature 390, 58 (1997).
  • M. Kroner et al., Nature 451, 311 (2008).
  • T. Dell’Orto, M. Di Ventra, J. Almeida, C. Coluzza andG. Margaritondo, Phys. Rev. B 52, 2265 (1995).
  • A. Nozik, Physica (Amsterdam) 14E, 115 (2002).[Crossref]
  • P. Meystre and M. Sargent III, Elements of QuantumOptics 3rd ed. (Springer-Verlag, Berlin, Ch. 15) 1998.
  • E.M. Lifshitz and L.P. Pitaevskii, Physical KineticsTheoretical Physics, Vol. X, (Nauka, Moscow) 1979.
  • A. Rose, J. Appl. Phys. 31, 1640 (1960).
  • V. Kozlov, Yu. Rostovtsev and M.O. Scully, Phys. Rev.A 74, 063829 (2006). The Agarwal-Fano process ofthe present paper, is modeling a quantum dot solarcell placed in a hohlraum which is driven by narrowband isotropic radiation. However, one can extend thepresent analysis to the case of directional incidentsolar radiation and isotropic spontaneous emission.
  • C.H. Henry, J. Appl. Phys. 51, 4494 (1980).
  • W. Guter et al., Appl. Phys. Lett. 94, 223504 (2009).
  • R.R. King et al., Appl. Phys. Lett. 90, 183516 (2007);R.R. King et al., Advances in OptoElectronics 2007,29523 (2007).
  • A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014(1997).
  • A. Luque, P.G. Linares, E. Antolin, E. Canovas, C.D.Farmer, C.R. Stanley and A. Marti, Appl. Phys. Lett.96, 013501 (2010).
  • T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98,171108 (2011).
  • J. Li M. Chong, J. Zhu, Y.Li J. Xu, P. Wang, Z. Shang,Z. Yang, R. Zhu and X. Cao, Appl. Phys. Lett. 60, 2240(1992).
  • J. Bruns, W. Seifert, P. Wawer, H. Winnicke, D. Braunigand H.G. Wagemann, Appl. Phys. Lett. 64, 2700(1994).
  • H. Kasai, H. Matsumura, Sol. Energy Mater. Sol.Cells 48, 93 (1997).
  • A. Luque, J. Appl. Phys. 11, 031301 (2011).
  • K. Barnham and G. Duggan, J. Appl. Phys. 67, 3490(1990); K.W.J. Barnham et al., Physica E (Amsterdam)14, 27 (2002).
  • A. Nozik, Physica E 14, 115 (2002).
  • S.A. Blokhin et al., Semiconductors 43, 514 (2009).
  • E.C. Cho et al., Nanotechnology 19, 245201 (2008).[Crossref]
  • V. Aroutiounian, S. Petrosyan, A. Khachatryan and K.Touryan, J. Appl. Phys. 89, 2268 (2001).
  • A. Alguno et al., Appl. Phys. Lett. 83, 1258 (2003).
  • U. Aeberhard and R.H. Morf, Phys. Rev. B 77, 125343(2008).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_coph-2012-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.