PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 1 | 1 |
Article title

Biomonitoring of atmospheric trace elements in agricultural areas and a former uranium mine

Content
Title variants
Languages of publication
EN
Abstracts
EN
Most biomonitoring studies worldwide have
evaluated the air quality in industrial and urban areas,
and even in mining areas to a lesser extent. However, air
quality investigations in agricultural areas are scarce.
In the present study, the trace metal accumulation and
physiological response of the biomonitor Tillandsia
capillaris were assessed. Plant samples were transplanted
to a reference site, a former open-cast uranium mine,
and agricultural sites with varying pollution levels (from
normal agricultural practices and near an open rubbish
dump) in the province of Córdoba, Argentina. Biomonitors
were exposed to ambient air for different exposure periods
for physiological or trace element determination. The
bioindicators revealed that the highest physiological
damage occurred at the sites close to the open dump and
the former uranium mine, while a comparison among
exposure periods indicating the winter season produced
the highest physiological damage in the biomonitor due
to the adverse climatic conditions and air pollution.
As the trace metal accumulation in the biomonitor was
mainly associated with the open dump and uranium
mine sites, monitoring and remediation programs should
now be applied to these sites in order to alleviate the
negative effects of pollution on the environment and the
population.
Publisher
Journal
Year
Volume
1
Issue
1
Physical description
Dates
accepted
13 - 8 - 2014
online
25 - 9 - 2014
received
29 - 7 - 2014
References
  • [1] Moretton J., Guaschino H., Amicone C., Beletzky V., Sánchez M., Santoro V., Noto B., Air Pollution in Argentina: general aspects, legislation, situation in the Capital Federal and Buenos Aires province, Ediciones universo, Buenos Aires, 1996.
  • [2] Guéguen F., Stille P., Millet M., Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence, Chemosphere, 2011, 85, 195–202.
  • [3] Guéguen F., Stille P., Geagea M.L., Boutin R., Atmospheric pollution in an urban environment by tree bark biomonitoring – Part I: Trace element analysis, Chemosphere, 2012, 86, 1013–1019. [Crossref]
  • [4] Lehndorff E., Schwark L., Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler e Part III: Major and trace elements, Atmos. Environ,. 2010, 44, 2822 -2829.[Crossref]
  • [5] Rodriguez J.H., Pignata M.L., Fangmeier A., Klumpp A., Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany), Chemosphere, 2010, 80, 208-215.
  • [6] Ho B.Q., Clappier A., Road traffic emission inventory for air quality modelling and to evaluate the abatement strategies: a case of Ho Chi Minh City, Vietnam, Atmos. Environ., 2012, 45, 3584-3593.
  • [7] Olszowski T., Tomaszewska B., Góralna-Włodarczyk B., Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase, Atmos. Environ., 2012, 50, 139-147.[Crossref]
  • [8] Pandey V.C., Singh N., Impact of fly ash incorporation in soil systems, Agr. Ecosys. Environ., 2010, 136, 16-27.
  • [9] Rodriguez J.H., Klumpp A., Fangmeier A., Pignata M.L., Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr., J. Hazard. Mater,. 2011,187, 58–66.
  • [10] Salazar M.J., Rodriguez J.H., Nieto G.L., Pignata M.L., Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill], J. Hazard. Mater., 2012, 244-253.[Crossref]
  • [11] Abril G.A., Wannaz E.D., Mateos A.C., Invernizzi R., Plá R.R., Pignata M.L., Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris, Ecol. Indic., 2014, 40, 153–161.[Crossref]
  • [12] McLaughlin M.J., Long term changes in cadmium bioavailability in soil, In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production, Zapata, F.Sikora, F., Eds., Austria, Bécs, IAEA-TEDOC-1272, IAEA, 354–362, 2002.
  • [13] Osztoics E., Csathó P., Németh T., Baczó Gy., Magyar M., Radimszky L., Osztoics A., Influence of Phosphate Fertilizer Sources and Soil Properties on Trace Element Concentrations of Red Clover, Comm. Soil Sci. Plant Anal, 2005, 36, 557-570.[Crossref]
  • [14] Hao X., Zhou D., Wang Y., Shi F., Jiang P., Accumulation of Cd, Zn Pb and Cd in Edible Parts of Four Commonly Grown Crops in Two Contaminated Soils, Int. J. Phytoremed., 2011, 13, 289–301.[Crossref]
  • [15] Rodriguez J.H., Salazar M.J., Steffan L., Pignata M.L., Franzaring J., Klumpp A., Fangmeier A., Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina, J. Geochem. Explor.,(in press), DOI:10.1016/j.gexplo.2014.05.025 [Crossref]
  • [16] Lavado R.S., Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina), J Environ. Manage., 2006, 80, 116–119.
  • [17] Youn-Joo A., Assessment of comparative toxicities of lead and copper using plant assay, Chemosphere, 2006, 62, 1359–1365.
  • [18] Blanco A., Determinación de los factores químico-biológicos que intervienen en la acumulación y translocación de Pb en cultivos agrícolas cercanos a una fundición de plomo en la provincia de Córdoba, PhD Thesis, National University of Córdoba, Córdoba, Argentine, 2014,(in Spanish).
  • [19] Bermudez G.M.A., Jasan R., Plá R., Pignata M.L., Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption, J. Hazard. Mater., 2011, 193, 264-271.
  • [20] MAFFJ, Survey of the cadmium contained in agricultural products, MAFFJ (Ministry of Agriculture, Forestry and Fisheries of Japan), Hokkaido, 2002.
  • [21] Zhao Y., Fang X., Mu Y., Cheng Y., Ma Q., Nian H., Yang C., Metal Pollution (Cd, Pb, Zn, and As) in Agricultural Soils and Soybean, Glycine max, in Southern China, B Environ. Contam. Tox., 2014, 92, 427–432.
  • [22] Bermudez G.M.A., Jasan R., Plá R., Pignata M.L., Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. J Hazard. Mater., 2012, 213–214, 447-456.
  • [23] Bačeva K., Stafilov T., Šajn R., Tănăselia C., Air dispersion of heavy metals in the vicinity of the As-Sb-Tl bounded mine and responsiveness of moss as a biomonitoring media in small-scale investigations, Environ. Sci. Pollut. Res., 2013, 20, 8763–8779.[Crossref]
  • [24] Goix S., Resongles E., Point D., Oliva P., Duprey J.L., Galvez E., Ugarte L., Huayta C., Prunier J., Zouiten C., et al., Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context, Atmos. Environ., 2013, 80, 330-341.
  • [25] Pignata M.L., Gudiño G.L., Wannaz E.D., Plá R.R., González C.M., Carreras H.A., Orellana L., Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor, Environ. Pollut., 2002, 120, 59–68.[Crossref]
  • [26] Klumpp A., Ansel W., Klumpp G., Breuer J., Vergne P., Sanz M.J., Rasmussen, Ro-Poulsen H., Ribas Artola A., Peñuelas J., et al., Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures, Atmos. Environ., 2009, 43, 329-339.
  • [27] EU European Union, Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air, Off. J. L23 3–16, 2004.
  • [28] Brighigna L., Papini A., Mosti S., Cornia A., Bocchini P., Galletti G., The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy, Rev. Biol. Trop., 2002, 50, 577-584.
  • [29] Figueiredo A.M.G., Nogueira C.A., Saiki M., Milian F.M., Domingos M., Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor, Environ. Pollut., 2007, 145, 279-292.
  • [30] Papini A., Tani G., Di Falco P., Brighigna L., The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome, Flora, 2010, 205, 94-100.
  • [31] Vianna N.A., Gonçalves D., Brandão F., Barros R.P., Amado Filho G.M., Meire R.O., Torres J.P.M., Malm O., D’Oliveira Júnior D., Andrade L.R., Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor, Environ. Sci. Pollut. Res., 2011, 18, 416-427. [Crossref]
  • [32] Wannaz E.D., Carreras H.A., Abril G.A., Pignata M.L., Maximum values of Ni2+, Cu2+, Pb2+ and Zn2+ in the biomonitor Tillandsia capillaris (Bromeliaceae): Relationship with cell membrane damage, Environ. Exp. Bot., 2011, 74, 296– 301.
  • [33] Papini A., Tani G., Di Falco P., Brighigna L., The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome, and details of the wing cells degeneration, Flora, 2010, 205, 94–100.
  • [34] Rodriguez J.H., Weller S.B., Wannaz E.D., Klumpp A., Pignata M.L., Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris, Ecol. Indic., 2011, 11, 1673–1680.[Crossref]
  • [35] Wannaz E.D., Pignata M.L., Calibration of four species of Tillandsia as air pollution biomonitors, J. Atmos. Chem., 2006, 53,185–209.
  • [36] Bermudez G.M.A., Rodriguez J.H., Pignata M.L., Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina, Environ. Res., 2009, 109, 6-14.
  • [37] Munzi S., Pirintsos S.A., Loppi S., Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress, Ecotox. Environ. Safe., 2009, 72, 281– 285.
  • [38] Paoli L., Pisani T., Guttová A., Sardella G., Loppi S., Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: Relationship with the lichen diversity, Ecotox. Environ. Safe., 2011, 74, 650–657.
  • [39] Pisani T., Munzi S., Paoli L., Bačkor M., Loppi S., Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr., Chemosphere, 2011, 82, 963–969.
  • [40] Wannaz E.D., Carreras H.A., Pérez C.A., Pignata M.L., Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina, Sci. Total Environ., 2006, 361, 267–278.
  • [41] Pignata M.L., Gudiño G.L., Wannaz E.D., Plá R.R., González C.M., Carreras H.A., Orellana L., Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor, Environ. Pollut., 2002, 120, 59–68.[Crossref]
  • [42] Pignata M.L., Plá R.R., Jasan R.C., Martínez M.S., Rodriguez J.H., Wannaz E.D., Gudiño G.L., Carreras H.A., González C.M., Distribution of atmospheric trace elements and assessment of air quality in Argentina employing the lichen Ramalina celastri as a passive biomonitor: detection of air pollution emission sources, Int. J. Environ. Heal., 2007, 1, 29–46.
  • [43] AIDIS Argentina, Diagnosis of the solid waste situation in Argentina, Secretary of Environment and Sustainable Development of the Nation (in Spanish), 2002.
  • [44] Bermudez G.M.A., Moreno M., Invernizzi R., Plá R., Pignata M.L., Evaluating top soil trace element pollution in the vicinity of a cement plant and former open-cast uranium mine in central Argentina, J. Soils Sediments, 2010, 10, 1308-1323.
  • [45] Tarhanen S., Metsärinne S., Holopainen T., Oksanen J., Membrane permeability response of lichen Bryorie fuscences to wet deposited heavy metal and acid rain, Environ. Pollut., 1999, 104, 121–129.
  • [46] Frati L., Brunialti G., Loppi S., Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from central Italy, J. Atmos. Chem., 2005, 52, 221–230.[Crossref]
  • [47] Von Arb C., Brunold C., Lichen physiology and air pollution, I. Physiological responses of in situ Parmelia sulcata among air pollution zones within Biel, Switzerland, Can. J. Bot., 1990, 68, 35-42.
  • [48] Nash III T.H., Lichen Biology. University Press, Cambridge, 1996.
  • [49] Saitanis C.J., Rig-Karandinos A.N., Karandinos M.G., Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties, Chemosphere, 2001, 42, 945-953.[Crossref]
  • [50] Environmental Protection Agency, Estimating ammonia emissions from anthropogenic nonagricultural sources-draft final report, Emission Inventory Improvement Program, 2004.
  • [51] Estrellan C.R., Iino F., Toxic emissions from open burning, Chemosphere, 2010, 80, 193–207.
  • [52] Smith S. J., van Aardenne J., Klimont Z., Andres R.J., Volke A., Arias D., Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 2011, 11, 1101–1116.
  • [53] Hernández Adrover J.J., Modeling of formation and pollutants emission in combustion systems, Dissertation, Ediciones de la Universidad de Castilla – La Mancha (in Spanish), 2001.
  • [54] Wannaz E.D., Abril G., Rodriguez J.H., Pignata M.L., Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris, J. Environ. Chem. Eng., 2013, 1, 1028–1035.
  • [55] Andreae M.O., Merlet P., Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 2001, 15, 955–966.
  • [56] Khlifi R., Olmedo P., Gil F., Feki-Tounsi M., Hammami B., Rebai A., Hamza-Chaffai A., Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia, Environ. Monit. Assess., 2014, 186, 761–779.
  • [57] Saunier J-B., Losfeld G., Freydier R., Grison C., Trace elements biomonitoring in a historical mining district (les Malines, France), Chemosphere, 2013, 93, 2016–2023.
  • [58] Oyedele D.J., Asonugho C., Awotoye O.O., Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application, Electron. J. Environ. Agric. Food Chem., 2006, 1446-1453.
  • [59] Shomar B.H., Trace elements in major solid-pesticides used in the Gaza Strip, Chemosphere, 2006, 65, 898-905.
  • [60] Giuffré de López Camelo L., Ratto de Miguez S., Marbán L., Heavy metals input with phosphate fertilizers used in Argentina, Sci. Total Environ., 1997, 204, 245-250.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_bimo-2014-0007
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.