Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 3 | 556-569

Article title

Complex symmetrized calculations on ammonia vibrational levels


Title variants

Languages of publication



This paper introduces a fully symmetrized Hamiltonian formalism designed for description of vibrational motion in ammonia (and any XH3 molecule). A major feature of our approach is the introduction of complex basis vibrational wavefunctions in product form, satisfying the complex symmetry species (CSS) of the molecular symmetric top point group (D
3h). The described formalism for ammonia is an adaptation of the approach, previously developed and applied to benzene, based on the CSS of the point group D
6h. The molecular potential energy surface (PES) is presented in the form of a Taylor series expansion around the planar equilibrium state. Using the described formalism, calculations have been carried out on the vibrational overtone and combination levels in 14NH3 up to vibrational excitation energies corresponding to the fourth N-H stretch overtone. The results from the calculations are adjusted to experimentally measured data, in order to determine the values of the harmonic and some anharmonic force constants of the molecular PES.










Physical description


1 - 9 - 2005
1 - 9 - 2005


  • Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko chaussee 72, 1784, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko chaussee 72, 1784, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko chaussee 72, 1784, Sofia, Bulgaria


  • [1] G. Herzberg: Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, 1945.
  • [2] K.K. Lehmann and S.L. Coy: “Spectroscopy and intramolecular dynamics of highly excited vibrational states of NH3”, Spectrochim. Acta A, Vol. 84, (1988), pp. 1389–1406.
  • [3] S.L. Coy and K.K. Lehmann: “Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3”, Spectrochim. Acta A, Vol. 45, (1989), pp. 47–56. http://dx.doi.org/10.1016/0584-8539(89)80026-1[Crossref]
  • [4] C. Cottaz, I. Kleiner, G. Tarrago, L.R. Brown, J.S. Margolis, R.L. Poynter H.M. Pickett, T. Fouchet, P. Drossart and E. Lellouch: “Line positions and intensities in the 2ν2/ν4 vibrational system of 14NH3 near 5–7 μm”, J. Mol. Spectrosc., Vol. 203, (2000), pp. 285–309. http://dx.doi.org/10.1006/jmsp.2000.8182[Crossref]
  • [5] I. Kleiner, G. Tarrago and L.R. Brown: “Positions and intensities in the 2ν2/ν2/ν4 vibrational system of 14NH3 near 4 μm”, J. Mol. Spectrosc., Vol. 173, (1995), pp. 120–145. http://dx.doi.org/10.1006/jmsp.1995.1224[Crossref]
  • [6] I. Kleiner, L.R. Brown, G. Tarrago, Q-L. Kou, N. Picque, G. Guelachvili, V. Dana and J-Y. Mandin: “Positions and intensities in the 2ν4/ν1/ν3 vibrational system of 14NH3 near 3 μm”, J. Mol. Spectrosc., Vol. 193, (1999), pp. 46–71. http://dx.doi.org/10.1006/jmsp.1998.7728[Crossref]
  • [7] P.R. Bunker and P. Jensen: Molecular Symmetry and Spectroscopy, 2nd ed., NRC Research, Ottawa, 1998.
  • [8] H. Lin, W. Thiel, S.N. Yurchenko, M. Carajal and P. Jensen: “Vibrational energies for NH3 based on high level ab initio potential energy surfaces”, J. Chem. Phys., Vol. 117, (2002), pp. 11265–11276. http://dx.doi.org/10.1063/1.1521762[Crossref]
  • [9] D. Rush and K. Wiberg: “Ab initio CBS-QCI calculations of the inversion mode of ammonia”, J. Phys. Chem. A, Vol. 101, (1997), pp. 3143–3151. http://dx.doi.org/10.1021/jp9624358[Crossref]
  • [10] N. Aquino, G. Campoy and H. Yee-Madeira: “The inversion potential for NH3 using a DFT approach”, Chem. Phys. Lett., Vol. 296, (1998), pp. 111–116. http://dx.doi.org/10.1016/S0009-2614(98)01017-3[Crossref]
  • [11] P.R. Bunker, W. Kraemer and V. Spirko: “An ab initio investigation of the potential function and rotation-vibration energies of NH3”, Can. J. Phys., Vol. 62, (1984), pp. 1801–1805.
  • [12] D. Luckhaus: “6D vibrational quantum dynamics: Generalized coordinate discrete variable representation and (a)diabatic contraction”, J. Chem. Phys., Vol. 113, (2000), pp. 1329–1347. http://dx.doi.org/10.1063/1.481924[Crossref]
  • [13] L. Celine, N.C. Handy, S. Carter and J.M. Bowman: “The vibrational levels of ammonia”, Spectrochim. Acta A, Vol. 58, (2002), pp. 825–838. http://dx.doi.org/10.1016/S1386-1425(01)00671-0[Crossref]
  • [14] P. Rosmus, P. Botschwina, H.-J. Werner, V. Vaida, P.C. Engelking and M.I. McCarthy: “Theoretical A1A2”-X1A1 absorption and emission spectrum of ammonia”, J. Chem. Phys., Vol. 86, (1987), pp. 6677–6692. http://dx.doi.org/10.1063/1.452416[Crossref]
  • [15] V. Ŝpirko and W.P. Kraemer: “Anharmonic potential function and effective geometries for the NH3 molecule”, J. Mol. Spectrosc., Vol. 133, (1989), pp. 331–344. http://dx.doi.org/10.1016/0022-2852(89)90196-3[Crossref]
  • [16] V. Ŝpirko: “Vibrational anharmonicity and the inversion potential function of NH3”, J. Mol. Spectrosc., Vol. 101, (1983), pp. 30–45.
  • [17] T. Rajamäki, A. Miani, J. Pesonen and L. Halonen: “Six-dimensional variational calculations for vibrational energy levels of ammonia and its isotopomers”, Chem. Phys. Lett., Vol. 363, (2002), pp. 226–232. http://dx.doi.org/10.1016/S0009-2614(02)01137-5[Crossref]
  • [18] N.C. Handy, S. Carter and S.M. Colwell: “The vibrational energy levels of ammonia”, Mol. Phys., Vol. 96, (1999), pp. 477–491. http://dx.doi.org/10.1080/002689799165341[Crossref]
  • [19] C. Leonard, N.C. Handy, S. Carter and J.M. Bowman: “The vibrational levels of ammonia”, Spectrochim. Acta A, Vol. 58, (2002), pp. 825–838. http://dx.doi.org/10.1016/S1386-1425(01)00671-0[Crossref]
  • [20] T. Lukka, E. Kauppi and L. Halonen: “Fermi resonances and local models in pyramidal XH3 molecules: An application to arsine (AsH3) overtone spectra”, J. Chem. Phys., Vol. 102, (1995), pp. 5200–5206. http://dx.doi.org/10.1063/1.469245[Crossref]
  • [21] E. Kauppi and L. Halonen: “Five dimensional local mode-Fermi resonance model for overtone spectra of ammonia”, J. Chem. Phys., Vol. 103, (1995), pp. 6861–6872. http://dx.doi.org/10.1063/1.470365[Crossref]
  • [22] J. Pesonen, A. Miani and L. Halonen. “New inversion coordinate for ammonia: Application to a CCSD(T) bidimensional potential energy surface”, J. Chem. Phys., Vol. 115, (2001), pp. 1243–1250. http://dx.doi.org/10.1063/1.1379752[Crossref]
  • [23] T. Rajamäki, A. Miani and L. Halonen: “Vibrational energy levels for symmetric and asymmetric isotopomers of ammonia with an exact kinetic energy operator and new potential energy surfaces”, J. Chem. Phys., Vol. 118, (2003), pp. 6358–6369. http://dx.doi.org/10.1063/1.1555801[Crossref]
  • [24] F. Gatti, C. Iung, C. Leforestier and X. Chapuisat: “Fully coupled 6D calculations of the ammonia vibrational-inversion tunneling states with a split Hamiltonian pseudospectral approach”, J. Chem. Phys., Vol. 111, (1999), pp. 7236–7243. http://dx.doi.org/10.1063/1.480099[Crossref]
  • [25] J.M.L. Martin, T.J. Lee and P.R. Taylor: “An accurate ab initio quartic force field for ammonia”, J. Chem. Phys., Vol. 97, (1992), pp. 8361–8371. http://dx.doi.org/10.1063/1.463406[Crossref]
  • [26] D. Lauvergnat and A. Nauts: “A harmonic adiabatic approximation to calculate vibrational states of ammonia”, Chem. Phys., Vol. 305, (2004), pp. 105–113. http://dx.doi.org/10.1016/j.chemphys.2004.06.026[Crossref]
  • [27] E.B. Wilson, J.C. Decius and P.C. Cross: Molecular Vibrations, Mc Graw-Hill, New York, 1955.
  • [28] S. Rashev, M. Stamova and S. Djambova: “A quantum mechanical description of vibrational motion in benzene in terms of completely symmetrized set of complex vibrational coordinates and wavefunctions”, J. Chem. Phys., Vol. 108, (1998), pp. 4797–4803. http://dx.doi.org/10.1063/1.475890[Crossref]
  • [29] S. Rashev, M. Stamova and L. Kancheva: “Quantum mechanical study of intramolecular vibrational energy redistribution in the second CH stretch overtone state in benzene”, J. Chem. Phys., Vol. 109, (1998), pp. 585–591. http://dx.doi.org/10.1063/1.476595[Crossref]
  • [30] S. Rashev: “Complex Symmetrized Analysis of Benzene Vibrations”, Int. J. Quantum Chem., Vol. 89, (2002), pp. 292–298. http://dx.doi.org/10.1002/qua.10280[Crossref]
  • [31] S. Rashev: “Large Scale Quantum Mechanical Calculations on the Benzene Vibrational System”, Recent Res. Developments in Phys. Chem., Vol. 37/661(2), (2004), pp. 279–308.
  • [32] J. Chang and R.E. Wyatt: “Preselecting paths for multiphoton dynamics, using artificial intelligence”, J. Chem. Phys., Vol. 85, (1986), pp. 1826–1839. http://dx.doi.org/10.1063/1.451184[Crossref]
  • [33] S.M. Lederman and R.A. Marcus: “The use of artificial intelligence methods in studying quantum intramolecular vibrational dynamics”, J. Chem. Phys., Vol. 88, (1988), pp. 6312–6321. http://dx.doi.org/10.1063/1.454469[Crossref]
  • [34] J.K. Cullum, R.A. Willowghby: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vols. I, II, Birkhauser, Boston, 1985.
  • [35] I.M. Mills: “Selection rules for vibronic transitions in symmetric top molecules”, Mol. Phys., Vol. 7, (1964), pp. 549–563. http://dx.doi.org/10.1080/00268976300101361[Crossref]
  • [36] R.G. Della Valle: “Local-mode to normal-mode hamiltonian transformation for X-H stretchings”, Mol. Phys., Vol. 63, (1988), pp. 611–621. http://dx.doi.org/10.1080/00268978800100421[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.