Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 3 | 441-451

Article title

Dehydrogenation studies of dihydronicotinamide adenine dinucleotide (NADH) with methylene blue in the presence of the copper hexcyanoferrate(II) complex and light



Title variants

Languages of publication



The effects of copper ferrocyanide and light on the dehydrogenation rate of NADH by methylene blue is studied. The results suggest that the dehydrogenation rate of NADH with methylene blue is enhanced by copper ferrocyanide. Light also affects the reaction rate.










Physical description


1 - 9 - 2005
1 - 9 - 2005


  • Department of Chemistry, Faculty of Natural Sciences, University of Guyana, P.O. Box: 101110, Georgetown, Guyana


  • [1] S.L. Miller: “A production of amino acids under possible primitive earth condition”, Science, Vol. 117, (1953), pp. 528–529. http://dx.doi.org/10.1126/science.117.3046.528[Crossref]
  • [2] S.L. Miller: “Production of some organic compounds under primitive earth conditions”, J. Am. Chem. Soc., Vol. 77, (1955), pp. 2351–2361. http://dx.doi.org/10.1021/ja01614a001[Crossref]
  • [3] C. Sagan and B.N. Khare: “Long wavelength ultraviolet photoproduction of amino acids on the primitive earth”, Science, Vol. 173, (1971), pp. 417–420. http://dx.doi.org/10.1126/science.173.3995.417[Crossref]
  • [4] J. Takahashi, T. Hosokawa, H. Masuda, T. Kaneko, K. Kobayashi, T. Saito and Y. Utsumi: “Abiotic synthesis of amino acids by X-ray irradiation of simple inorganic gases”, Appl. Phys. Lett., Vol. 74, (1999), pp. 877–879. http://dx.doi.org/10.1063/1.123396[Crossref]
  • [5] J.F. Kasting, A.A. Pavlor and J.L. Siefert: “A coupled ecosystem-climate model for predicting the methane concentration in the archean atmosphere”, Origins Life Evol. Biosphere, Vol. 31, (2001), pp. 271–285. http://dx.doi.org/10.1023/A:1010600401718[Crossref]
  • [6] J.F. Kasting: “Earth's early atmosphere”, Science, Vol. 259 (1993), pp. 920–926. http://dx.doi.org/10.1126/science.11536547[Crossref]
  • [7] M.T. Beck: “Prebiotic coordination chemistry. The possible role of transition metal complexes in chemical evolution”, In: H. Sigel (Ed.): Metal Ions in Biological Systems, Vol. 7, Marcel Dekker, New York, 1978, p. 1.
  • [8] Kamaluddin, M. Nath and A. Sharma: “Role of metal ferrocyanides in chemical evolution”, Origins Life Evol. Biosphere, Vol. 24, (1994), pp. 469–477. http://dx.doi.org/10.1007/BF01582031[Crossref]
  • [9] B.B. Tewari and Kamaluddin: “Interaction of o-amniphenol and o-nitrophenol with copper, zinc, molybdenum and chromium ferrocyanides”, J. Colloid and Interface Sci., Vol. 193, (1997), pp. 167–171. http://dx.doi.org/10.1006/jcis.1997.5052[Crossref]
  • [10] B.B. Tewari, D. Mohan and Kamaluddin: “Interaction of 2, 4-dinitrophenol and 2,4,6-trinitrophenol with copper, zinc, molybdenum and chromium ferrocyanides”, Colloid and Surfaces, Vol. 131, (1998), pp. 89–93. http://dx.doi.org/10.1016/S0927-7757(97)00097-6[Crossref]
  • [11] L.H. Baetsle, D. Huys and D. Van Deyck: “Ferrocyanide molybdate, A new inorganic ion-exchanger”, J. Inorg. Nucl. Chem., Vol. 28, (1966), pp. 2385–2394. http://dx.doi.org/10.1016/0022-1902(66)80130-6[Crossref]
  • [12] W.U. Malik, S.K. Srivastava, B.M. Bhaudari and S. Kumar: “Ion-exchange properties of chromium ferrocyanide”, J. Inorg. Nucl. Chem., Vol. 38, (1976), pp. 342–343. http://dx.doi.org/10.1016/0022-1902(76)80427-7[Crossref]
  • [13] Y. Hino and S. Minakami: “Electron transport pathway of the NADH dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride”, Biochem. J., Vol. 178, (1979), pp. 323–329.
  • [14] J. Moiroux and P.J. Elving: “Mechanistic aspects of the electrochemical oxidation of dihydro nicotinamide adenine dinucleotide (NADH)”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 6533–6538. http://dx.doi.org/10.1021/ja00541a024[Crossref]
  • [15] Y.D. Wu and K.N. Houk: “Theoretical evaluation of conformational preferences of NAD+ and NADH: An approach to understanding the steriospecificity of NAD+/NADH-dependent dehydrogenases”, J. Am. Chem. Soc., Vol. 113, (1991), pp. 2353–2358. http://dx.doi.org/10.1021/ja00007a002[Crossref]
  • [16] K. Umeda, A. Nakamura and F. Toda: “Investigation on photochemical reduction of NAD+ to NADH in liposomal solution”, Chem. Lett., (1990), pp. 1433–1436. [Crossref]
  • [17] T. Kajiki, N. Tamura, T. Nabeshima and Y. Yano: “Rate acceleration of the oxidation of an NADH model by flavin with a functionalized flavin receptor in chloroform”, Chem. Lett., (1995), pp. 1063–1064. [Crossref]
  • [18] M. Murata, M. Kobayashi and S. Kawanishi: “Nonenzymatic reduction of nitroderivatives of a heterocyclic amine IQ by NADH and Cu(II) leads to oxidative DNA damage”, Biochemistry, Vol. 38 (1999), pp. 7624–7629. http://dx.doi.org/10.1021/bi982906b[Crossref]
  • [19] M. Murray and A.M. Butler: “Hepatic biotransformation of parathion: Role of cytochrome p 450 in NADPH- and NADH-meditated microsomal oxidation in vitro”, Chem. Res. Toxicol. Vol. 7, (1994), pp. 792–799. http://dx.doi.org/10.1021/tx00042a012[Crossref]
  • [20] T. Iyanagi and K.F. Anan: “One electron oxidation-reduction properties of hepatic NADH-Cytochrome b5 reductase”, Biochemistry, Vol. 23, (1984) pp. 1418–1425. http://dx.doi.org/10.1021/bi00302a013[Crossref]
  • [21] H.A. Harper: Reviews of Physiological Chemistry, 14th ed., Lange Medical Publications, Los Altos, California, 1973, p. 100.
  • [22] D.E. Metzler: Biochemistry, Academic Press, New York, 1977, p. 469.
  • [23] A. Ciszewski and G. Milczarek: “Electrocatalysis of NADH oxidation with an electropolymerized film of 1,4-bis (3,4-dihydroxyphenyl)-2,3-dimethylbutane”, Anal. Chem., Vol. 72, (2000) pp. 3203–3209. http://dx.doi.org/10.1021/ac991182m[Crossref]
  • [24] T.N. Rao, I. Yagi, T. Miwa, D.A. Tryk and A. Fujishima: “Electrochemical oxidation of NADH at highly boron-doped diamond electrodes”, Anal. Chem., Vol. 71, (1999), pp. 2506–2511. http://dx.doi.org/10.1021/ac981376m[Crossref]
  • [25] G.D. Storrier, K. Takada and H.D. Abrana: “Catechol-pendant terpyridine complexes: electrodeposition studies and electrocatalysis of NADH oxidation”, Inorg. Chem., Vol. 38, (1999), pp. 559–565. http://dx.doi.org/10.1021/ic980578y[Crossref]
  • [26] H.L. Levine and E.T. Kaiser: “Steriospecificity in the oxidation of NADH by flavopapaine”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 343–345. http://dx.doi.org/10.1021/ja00521a055[Crossref]
  • [27] B.W. Carlson, L.L. Miller, P. Neta and J. Grodkowski: “Oxidation of NADH involving rate-limiting one electron transfer”, J. Am. Chem. Soc., Vol. 106, (1984), pp. 7233–7239. http://dx.doi.org/10.1021/ja00335a062[Crossref]
  • [28] C. Degrand and L.L. Miller: “An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation”, J. Am. Chem. Soc., Vol. 102, (1980), pp. 5728–5732. http://dx.doi.org/10.1021/ja00538a005[Crossref]
  • [29] F. Ni, H. Feng, L. Gorton and T.M. Cotton: “Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, mediator for NADH oxidation”, Langmuir, Vol. 6, (1990), pp. 66–73. http://dx.doi.org/10.1021/la00091a010[Crossref]
  • [30] A. Marcinek, J. Rogowski, J. Adamus, J. Gebicki, P. Bednarek and T. Bally “Hydroge-transferre radical cations of NDH model compound 2. Sequential electron-proton addition to NAD+”, J. Phys. Chem. A, Vol. 104, (2000), pp. 718–723. http://dx.doi.org/10.1021/jp993816z[Crossref]
  • [31] A. Marcinek, J. Adamus, J. Gebicki, M.S. Platz and P. Bednarek: “Hydrogen transferred radical cation of NADH model compounds. 3. 1,8-acridinediones”, J. Phys. Chem. A, Vol. 104, (2000), pp. 724–728. http://dx.doi.org/10.1021/jp993817r[Crossref]
  • [32] V. Kourim, J. Rais and B. Million: “Exchange properties of complex cyanides-I”, J. Inorg. Chem., Vol. 26, (1964), pp. 1111–1115.
  • [33] W. Hücketl: Structural Chemistry of Inorganic Compounds, Vol. 1, Elsevier, Amsterdam, 1950.
  • [34] K. Nakamoto, J. Fujita and H. Murata: “Infrared spectra of metallic complexes. V. The infrared spectra of nitro and nitrito complexes”, J. Am. Chem. Soc., Vol. 80, (1958), pp. 4817–4823. http://dx.doi.org/10.1021/ja01551a016[Crossref]
  • [35] P. Ratnasamy and A.J. Leonard: “Evolution of chromia”, J. Phys. Chem., Vol. 76, (1976), pp. 1938–1843.
  • [36] B.B. Tewari and Kamaluddin: “Photo-sensitized oxidation of diphenylamine using nickel ferrocyanide and its relevance to chemical evolution”, In: Proceedings of Ninth National Space Science Symposium (NSSS-96), Osmania University, Hyderabad, India, 1996, p. 93.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.