Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2003 | 1 | 1 | 35-52

Article title

Epicatechin-copper 9II) complexes: Damage of small intestinal epithelium


Title variants

Languages of publication



Four epicatechins [(−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCg)] and their corresponding copper complexes were compared with regard to their effect on the viability of Caco-2 colon cancer cells in vitro, measured by 3-(4,5-dimethylthyazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. The viability of Caco-2 cells exposed to EC (1 mM), ECg (1 mM) or EGC (1mM) respectively, for 30 min, was comparable to that of the saline control group, while EGCg (1 mM) apparently enhanced cellular activity. in contrast, the cells treated with epicatechin-copper complexes were killed. Bivalent copper 91 mM), in similar conditions, did not affect the cells. No cell leakage or other histological differences were observed, implying a rapid cell death. The suggested mechanism of killing is by OH radical attack, produced in the presence of epicatechin-copper complexes, but not in the presence of either of the epicatechins or copper alone. The reaction sites are discussed.










Physical description


1 - 3 - 2003
1 - 3 - 2003


  • Department of Chemistry, Shiga University of Medical Science, Seta, Otsu, 520-2192, Shiga, Japan
  • Department of Chemistry, Shiga University of Medical Science, Seta, Otsu, 520-2192, Shiga, Japan
  • Department of Life Style Studies, School of Human Cultures, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, Japan
  • Department of Chemistry, Shiga University of Medical Science, Seta, Otsu, 520-2192, Shiga, Japan


  • [1] J. Peterson and J. Dwyer: “Flavonoids: dietary occurrence and biochemical activity”, Nutr. Res., Vol. 18, (1998), pp. 1995–2018. http://dx.doi.org/10.1016/S0271-5317(98)00169-9[Crossref]
  • [2] C.A. Rice-Evans, N.J. Miller, G. Paganga: “Antioxidant properties of phenolic compounds”, Trends in Plant Science, Vol. 2, (1997), pp. 152–159. http://dx.doi.org/10.1016/S1360-1385(97)01018-2[Crossref]
  • [3] J.B. Harborne and C.A. Williams: “Advances in flavonoid research since 1992”, Phytochemistry, Vol. 55, (2000), pp. 481–504. http://dx.doi.org/10.1016/S0031-9422(00)00235-1[Crossref]
  • [4] G. Qiong, Z. Baolu, L. Meifen, S. Shengrong, X. Wenjuan: “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes”, Biochim. Biophys. Acta, Vol. 1304, (1996), pp. 210–222.
  • [5] S.A. Aherne and N.M. O'Brien: “Mechanism of protection by the flavonoid, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells”, Free Radic. Biol. Med., Vol. 29, (2000), pp. 507–514. http://dx.doi.org/10.1016/S0891-5849(00)00360-9[Crossref]
  • [6] P. Leanderson, A.O. Faresjö, C. Tagesson: “Green Tea Polyphenols Inhibit Oxidant-Induced DNA Strand Breakage in Cultured Lung Cells”, Free Radic. Biol. Med., Vol. 23, (1997), pp. 235–242. http://dx.doi.org/10.1016/S0891-5849(96)00590-4[Crossref]
  • [7] K. Osada, M. Takahashi, S. Hoshina, M. Nakamura, S. Nakamura, M. Sugano: “Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro”, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., Vol. 128, (2001), pp. 153–164. http://dx.doi.org/10.1016/S1532-0456(00)00192-7[Crossref]
  • [8] C.J. Dufresne and E.R. Farnworth: “A review of latest research findings on the health promotion properties of tea”, J. Nutr. Biochem., Vol. 12, (2001), pp. 404–421. http://dx.doi.org/10.1016/S0955-2863(01)00155-3[Crossref]
  • [9] R. Amarowicz and F. Shahidi: “A rapid chromatographic method for separation of individual catechins from green tea”, Food Res. Int., Vol. 29, (1996), pp. 71–76. http://dx.doi.org/10.1016/0963-9969(95)00048-8[Crossref]
  • [10] C. Kies: “Food sources of dietary copper”, Adv. Exp. Med. Biol., Vol. 258, (1989), pp. 1–20.
  • [11] A. Czlonkowska, J. Gajda, M. Rodo: “Effects of long-term treatment in Wilson's disease with D-penicillamine and zinc sulfate”, J. Neurol., Vol. 243, (1996), pp. 269–73. http://dx.doi.org/10.1007/BF00868525[Crossref]
  • [12] K. Ishige, D. Schubert, Y. Sagara: “Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms”, Free Radic. Biol. Med., Vol. 30, (2001), pp. 433–446. http://dx.doi.org/10.1016/S0891-5849(00)00498-6[Crossref]
  • [13] J.F.B. Mercer: “The molecular basis of copper-transport diseases”, Trends Mol. Med., Vol. 7, (2001), pp. 64–69. http://dx.doi.org/10.1016/S1471-4914(01)01920-7[Crossref]
  • [14] S. Kameoka, P. Leavitt, C. Chang, S.-M. Kuo: “Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids”, Cancer Lett., Vol. 146, (1999), pp. 161–167. http://dx.doi.org/10.1016/S0304-3835(99)00253-0[Crossref]
  • [15] S.-M. Kuo, C.T. Huang, P. Blum, C. Chang: “Quercetin cumulatively enhances copper induction of metallothionein in intestinal cells”, Biol. Trace Elem. Res., Vol. 84, (2001), pp. 1–10. http://dx.doi.org/10.1385/BTER:84:1-3:001[Crossref]
  • [16] A.N. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen, R. Hu, S. Mandlekar: “Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE)”, Drug Metab. Rev., Vol. 33, (2001), pp. 255–71. http://dx.doi.org/10.1081/DMR-120000652[Crossref]
  • [17] R. Yu, J.J. Jiao, J.L. Duh, K. Gudehithlu, T.H. Tan, A.N. Kong: “Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression”, Carcinogenessis, Vol. 18, (1997), pp. 451–456. http://dx.doi.org/10.1093/carcin/18.2.451[Crossref]
  • [18] B. Annabi, M.-P. Lachambre, N. Bousquet-Gagnon, M. Pagé, D. Gingras, R. Béliveau: “Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 209–220. http://dx.doi.org/10.1016/S0167-4889(01)00187-2[Crossref]
  • [19] N.J. Miller, C. Castelluccio, L. Tijburg, C. Rice-Evans: “The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators?”, FEBS Lett., Vol. 392, (1996), pp. 40–44. http://dx.doi.org/10.1016/0014-5793(96)00780-6[Crossref]
  • [20] R. Walker: “Modulation of toxicity by dietary and environmental factors”, Environ. Toxicol. Pharmacol., Vol. 2, (1996), pp. 181–188. http://dx.doi.org/10.1016/S1382-6689(96)00052-X[Crossref]
  • [21] S.-M. Kuo, P.S. Leavitt, C.P. Lin: “Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells”, Biol. Trace Elem. Res., Vol. 62, (1998), pp. 135–53. [Crossref]
  • [22] N. Yamanaka, O. Oda, S. Nagao: “Green tea catechins such as (−)-epicatechin and (−)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase”, FEBS Lett., Vol. 401, (1997), pp. 230–234. http://dx.doi.org/10.1016/S0014-5793(96)01455-X[Crossref]
  • [23] T. Kimura, N. Hoshino, A. Yamaji, F. Hayakawa, T. Ando: “Bactericidal activity of catechin-copper (II) complexes on Esterichia coli ATCC11775 in the absence of hydrogen peroxide”, Lett. Appl. Microbiol., Vol. 27, (1998), pp. 328–330. http://dx.doi.org/10.1046/j.1472-765X.1998.00458.x[Crossref]
  • [24] M. Mochizuki, S. Yamazaki, K. Kano, T. Ikeda: “Kinetic analysis and mechanistic aspects of autoxidation of catechins”, Biochim. Biophys. Acta, Vol. 1569, (2002), pp. 35–44.
  • [25] P.C.H. Hollman and M.B. Katan: “Dietary Flavonoids: Intake, Health Effects and Bioavailability”, Food Chem. Toxicol., Vol. 37, (1999), pp. 937–942. http://dx.doi.org/10.1016/S0278-6915(99)00079-4[Crossref]
  • [26] P. Arthursson: “Epithelial transport of drugs in cell culture. I. A. model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells”, J. Pharm. Sci., Vol. 79 (1980), pp. 476–482. http://dx.doi.org/10.1002/jps.2600790604[Crossref]
  • [27] T. Mosmann: “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Citotoxicity Assays”, Immunol. Methods, Vol. 65, (1983), pp. 55–63. http://dx.doi.org/10.1016/0022-1759(83)90303-4[Crossref]
  • [28] M.C. Alley, D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Czerwinsky, D.L. Fine, B.J. Abott, J.G. Mayo, R.H. Shoemaker, M.R. Boyd: “Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay”, Cancer Res., Vol. 48, (1998), pp. 589–601.
  • [29] Y. Zhao, J. Cao, H. Ma, J. Liu: “Apoptosis induced by tea polyphenols in HL-60 cells”, Cancer Lett., Vol. 121, (1997), pp. 163–167. http://dx.doi.org/10.1016/S0304-3835(97)00348-0[Crossref]
  • [30] H. Wang, G.J. Provan, K. Helliwell: “Tea flavonoids: their functions, utilization and analysis”, Trends Food Sci. Tech., Vol. 11, (2000), pp. 152–160. http://dx.doi.org/10.1016/S0924-2244(00)00061-3[Crossref]
  • [31] I.R. Record and J.M. Lane: “Simulated intestinal digestion of green and black teas”, Food Chem., Vol. 73, (2001), pp. 481–486. http://dx.doi.org/10.1016/S0308-8146(01)00131-5[Crossref]
  • [32] Y. Shimada, H. Goto, T. Kogure, N. Shibahara, I. Sakakibara, H. Sasaki, K. Terasawa: “Protective Effect of Phenolic Compounds Isolated from the Hooks and Stems of Uncaria sinensis on the Glutamate-Induced Neuronal Death”, Am. J. Chin. Med., Vol. 29, (2001), pp. 173–180. http://dx.doi.org/10.1142/S0192415X01000198[Crossref]
  • [33] F.P. Altman: “Studies on the Reduction of Tetrazolium Salts. III. The products of Chemical and Enzymic Reduction”, Histochemistry, Vol. 38, (1974), pp. 155–171. http://dx.doi.org/10.1007/BF00499663[Crossref]
  • [34] X. Tan, D. Hu, S. Li, Y. Han, Y. Zhang, D. Zhou: “Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells”, Cancer Lett., Vol. 158, (2000), pp. 1–6. http://dx.doi.org/10.1016/S0304-3835(00)00445-6[Crossref]
  • [35] J. Grooten, V. Goossens, B. Vanhaesebroeck, W. Fiers: “Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumor necrosis factor-induced Citotoxicity”, Cytokine, Vol. 5, (1993), pp. 546–555. http://dx.doi.org/10.1016/S1043-4666(05)80003-1[Crossref]
  • [36] A.G.E. Pearse: Histochemistry: Theoretical and Applied, Churchill Livingstone, London Press, Edinburgh, 1972, pp. 881–920.
  • [37] Y. Lin, D.A. Peterson, H. Kimura, D. Schubert: “Mechanism of cellular 3(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction”, J. Neurochem., Vol. 69, (1997), pp. 581–593.
  • [38] Y. Liu: “Understanding the biological activity of amyloid proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostasis”, Prog. Neuropsychopharmacol. Biol. Psychiatry, Vol. 23, (1999), pp. 377–395. http://dx.doi.org/10.1016/S0278-5846(99)00003-2[Crossref]
  • [39] Z.Y. Chen and P.T. Chan: “Antioxidative activity of green tea catechins in canola oil”, Chem. Phys. Lipids., Vol. 82, (1996), pp. 163–172. http://dx.doi.org/10.1016/0009-3084(96)02587-X[Crossref]
  • [40] C.A. Rice-Evans, N.J. Miller, G. Paganga: “Structure-antioxidant activity relationships of flavonoids and phenolic acids”, Free Rad. Biol. Med., Vol. 20, (1996), pp. 933–956. http://dx.doi.org/10.1016/0891-5849(95)02227-9[Crossref]
  • [41] G. Cao, E. Sofic, R.L. Prior: “Antioxidant and prooxidant Behavior of Flavonoids: Structure-Activity Relationships”, Free Rad. Biol. Med., Vol. 22, (1997), pp. 749–760. http://dx.doi.org/10.1016/S0891-5849(96)00351-6[Crossref]
  • [42] D.D. Schramm, H.E. Collins, J.B. German: “Flavonoid transport by mammalian endothelial cells”, J. Nutr. Biochem., Vol. 10, (1999), pp. 193–197. http://dx.doi.org/10.1016/S0955-2863(98)00104-1[Crossref]
  • [43] G. Williamson, A.J. Day, G.W. Plumb, D. Couteau: “Human metabolic pathways of dietary flavonoids and cinnamates”, Biochem. Soc. Trans., Vol. 28, (2000), pp. 16–21.
  • [44] J.B. Vaidyanathan and T. Walle: “Glucuronidation and sulfation of the tea flavonoid (−)-epicatechin by the human and rat enzymes”, Drug Metab. Dispos., Vol. 30, (2002), pp. 897–903. http://dx.doi.org/10.1124/dmd.30.8.897[Crossref]
  • [45] J.B. Vaidyanathan and T. Walle: “Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2”, Pharm. Res., Vol. 18, (2001), pp. 1420–1425. http://dx.doi.org/10.1023/A:1012200805593[Crossref]
  • [46] J.B. Vaidyanathan and T. Walle: “Apical transporter MRP2, a barrier for the intestinal absorption of the anticancer tea flavonoid epicatechin”, Biochim. Biophys. Acta, Vol. 1542, (2002), pp. 149–159. http://dx.doi.org/10.1016/S0167-4889(01)00175-6
  • [47] F. Hayakawa, T. Kimura, H. Sohmiya, M. Fujita, N. Hoshino, T. Ando: “The correlation of structure and activity of phenolic compounds to DNA cleavage in the presence of cupric ion (in Japanese)”, Nippon Nogeikagaku Kaishi, Vol. 72, (1998), pp. 759–761.
  • [48] J.E. Brown, H. Khodr, R.C. Hider, C.A. Rice-Evans: “Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties”, Biochem. J., Vol. 330, (1998), pp. 1173–1178.
  • [49] F.L. Tobiason, R.W. Hemingway, G. Vergoten: Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Modeling the conformation of polyphenols and their complexation with polypeptides; self-association of catechin and its complexation with l-proline glycine oligomers, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 527–544.
  • [50] F.L. Tobiason, R.W. Hemingway, G. Vergoten: Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, Interaction of flavonoids with peptides and proteins and conformations of dimeric flavonoids in solution, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 509–526.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.