Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 1 | 127-138

Article title

Specific solutions of the generalized Korteweg-de Vries equation with possible physical applications

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Solutions for a type of generalized Korteweg-de Vries equation which should have physical impact will be determined here. These types of solutions should have applications in the study of intrinsic localized modes optical waveguide arrays and fluid dynamics. It is shown that trigonometric and hyperbolic solutions can be obtained by matching powers and coefficients of the independent terms in the equation after the assumed solution has been substituted. As well, solutions to the equation in terms of more complicated Jacobe elliptic functions are determined.

Publisher

Journal

Year

Volume

3

Issue

1

Pages

127-138

Physical description

Dates

published
1 - 3 - 2005
online
1 - 3 - 2005

Contributors

author
  • Department of Mathematics, University of Texas, 1201 W. University Dr., 78541-2999, Edinburg, USA

References

  • [1] S. Dusuel, P. Michaux and M. Remoissenet: “From kinks to compactonlike kinks”,Phys. Rev. E,Vol. 57, (1998),pp. 2320–2326. http://dx.doi.org/10.1103/PhysRevE.57.2320[Crossref]
  • [2] P.T. Dinda and M. Remoissenet: “Breather compactons in nonlinear Klein-Gordon systems”,Phys. Rev. E,Vol. 60, (1999),pp. 6218–6121. http://dx.doi.org/10.1103/PhysRevE.60.6218[Crossref]
  • [3] P. Rosenau and J.M. Hyman: “Compactons: Solitons with Finite Wavelength”,Phys. Rev. Lett,Vol. 70 (1993),pp. 564–567. http://dx.doi.org/10.1103/PhysRevLett.70.564[Crossref]
  • [4] P. Bracken: “Some methods for generating solutions to the Korteweg-de Vries equation”,Physica A, Vol. 335, (2004), pp. 70–78. http://dx.doi.org/10.1016/j.physa.2003.11.026[WoS][Crossref]
  • [5] P. Bracken: “Symmetry Properties of the Generalized Korteweg-de Vries Equation And Some Explicit Solutions”,Texas preprint
  • [6] A.M. Wazwaz: “Exact special solutions with solitary patterns for the nonlinear dispersiveK(m, n) equations”,Chaos, Solitons and Fractals,Vol. 13, (2001),pp. 161–170. http://dx.doi.org/10.1016/S0960-0779(00)00248-4[Crossref]
  • [7] A.M. Wazwaz: “New solitary-wave special solutions with compact support for the nonlinear dispersiveK(m, n) equations”,Chaos, Solitons and Fractals,Vol. 13, (2002),pp. 321–330. http://dx.doi.org/10.1016/S0960-0779(00)00249-6[Crossref]
  • [8] C. Yan: “A simple transformation for nonlinear waves”,Physics Letters A,Vol. 224, (1996,pp. 77–84. http://dx.doi.org/10.1016/S0375-9601(96)00770-0[Crossref]
  • [9] Z. Fu, S. Liu and S. Liu: “New transformations and new approach to find exact solutions to nonlinear equations”,Physics Letters A,Vol. 299, (2002),pp. 507–512. http://dx.doi.org/10.1016/S0375-9601(02)00737-5[Crossref]
  • [10] J. Dalibard, J.M. Raimond and J. Zinn-Justin:Fundamental Systems in Quantum Optics, Les Houches, Session LIII, North-Holland, 1992.
  • [11] A. Ludu and J.P. Draayer: “Patterns on liquid surfaces: cnoidal waves, compactons and scaling”,Physica D,Vol. 123, (1998),pp. 82–91. http://dx.doi.org/10.1016/S0167-2789(98)00113-4[Crossref]
  • [12] D.K. Campbell, S. Flach and Y. Kivshar: “Localizing Energy Through Nonlinearity and Discreteness”,Physics Today,Vol. 57, (2004),pp. 43–49.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476511
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.