Preferences help
enabled [disable] Abstract
Number of results
2005 | 3 | 1 | 115-126
Article title

Magnetic and transport properties of monocrystallineFe

Title variants
Languages of publication
A monocrystal ofFe
4 is characterized by resistance, magnetoresistance and magnetic measurements in a temperature range from 4.2 K to 350 K and magnetic field-cycling from −9 T to 9 T. The resistance measurements revealed a metal-insulator Verwey transition (VT) atT
v=123.76 K with activation energy E=92.5 meV at T >T
v and temperature-substitute for the activation energy below the VT,T
B≈3800 K within 70 K–110K. The magnetotransport results independently verified the VT at 123.70 K, with discontinuous change in the magnetic moment ΔM≈0.21 ΔM≈0.21μ
B and resistance hysteresis, dependent on the magnetic field in a narrow temperature range of 0.4° around theT
v. The magnetic characterization established self consistentlyT
v as ≈123.67 K, the jump in the magnetization at the VT≈0.25μ
B and confirmed, that the magnetocrystalline anisotropy is the main microscopic mechanism responsible for the magnetization of the monocrystal (88%) with additional natural and imposed defects contributing as 12%.
Physical description
1 - 3 - 2005
1 - 3 - 2005
  • [1] R.C. O'Handley:Modern Magnetic Materials, Principles and Applications, John Wiley & Sons Inc., New York, 2000.
  • [2] E.J.W. Verwey: “Electronic conduction of magnetite (Fe 3O 4) and its transition point at low temperatures”,Nature (London),Vol. 144, (1939),pp. 327–328; E.J.W. Verwey and P.W. Haayman: “Electronic conductivity and transition point of magnetite (Fe 3O 4)”,Physica, Vol. 8, (1941), pp. 979–987.
  • [3] N.F. Mott: “Materials with mixed valency that show a Verwey transition”,Philosophical Magazine B,Vol. 42, (1980),pp.327–335. [Crossref]
  • [4] J.P. Shepherd, J.W. Koenitzer, R. Aragon, J. Spaek and J.M. Honig: “Heat capacity and entropy of nonstoichiometric magnetiteFe 3(1−δ)O 4: The thermodynamic nature of the Verwey transition”,Phys. Rev. B,Vol. 43, (1991),pp.8461–8471.[Crossref]
  • [5] E.I. Terukov, W. Reichelt, D. Ihle and H. Oppermann: “Isotope effect on the Verwey transition temperature of magnetite”,Phys. Stat. Sol.(b),Vol. 95, (1979),pp.491–495. [Crossref]
  • [6] T.B. Massalski:Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Materials Park, OH, 1990.
  • [7] A. Kazowski, R.J. Rasmussen, J.E. Sabol, P. Metcalf and J.M. Honig: “Electrical conduction in single-crystal Electrical conduction in single-crystalFe 3−y Ti y O 4 (0<y<0.9)”,Phys. Rev. B,Vol. 48, (1993),pp.2057–2062.
  • [8] H.Y. Hwang, S.W. Cheong, N.P. Ong and B. Batlogg: “Spin-Polarized Intergrain Tunneling inLa 2/3Sr 1/3MnO 3”,Phys. Rev. Lett.,Vol. 77, (1996),pp.2041–2044.[Crossref]
  • [9] X.W. Li, A. Gupta, G. Xiao and C.Q. Gong: “Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films”,Appl. Phys. Lett.,Vol. 71, (1997),pp.1124–1126.[Crossref]
  • [10] J.M.D. Coey, A.E. Berkowitz, Ll Balcells, F.F. Putris and F.T. Parker: “Magnetoresistance of magnetite”,Appl. Phys. Lett.,Vol. 72, (1998),pp.734–736.[Crossref]
  • [11] G.R. Palin:Electrochemistry for technologists, Franklin Book Company Inc., New York, 1969.
  • [12] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M., Daughton, S. von Molnar, L.M. Roukes, A.Y. Chtchelkanova and D.M. Treger: “Spintronics: A Spin-BasedElectronics Vision for the Future”,Science,Vol. 294, (2001),pp.1488–1495.[Crossref]
  • [13] J.J. Versluijs, M.A. Bari and J.M.D. Coey: “Magnetoresistance of Half-Metallic Oxide Nanocontacts”,Phys. Rev. Lett.,Vol. 87, (2001),pp.26601–26604.[Crossref]
  • [14] Pankaj Poddar, Tcipi Fried and Gil Markovich: “First-order metal-insulator transition and spin-polarized tunneling inFe 3O 4 nanocrystals”,Phys. Rev. B, Vol. 65, (2002), pp. 172405–172409.[Crossref]
  • [15] D. Ihle and B. Lorenz: “Small-polaron conduction and short-range order inFe 3O 4”,J. Phys. C,Vol. 19, (1986),pp.5239–5251.[Crossref]
  • [16] J.R. Drabble, T.D. Whyte and R.M. Hooper: “Electrical conductivity of magnetite at low temperatures”,Solid State Commun.,Vol. 9, (1971),pp.275–278; H. Graener, M. Rozenberg, T.E. Whall and M.R.B. Jones: “The low-temperature resistivity and Seebeck coefficient of fluorine-substituted magnetite”,Philos. Mag. B, Vol. 40, (1979), pp. 389–399; M. Pai and J.M. Honig: “Comments on the temperature dependence of the resistivity of magnetite below the Verwey transition”,J. Phys. C, Vol. 16, (1983), L35–L38.[Crossref]
  • [17] G.Q. Gong, A. Gupta, Gang Xiao, W. Qian and V.P. Dravid: “Magnetoresistance and magnetic properties of epitaxial magnetite thin films”,Phys. Rev. B,Vol. 56, (1997),pp.5096–5099.[Crossref]
  • [18] R.E. Camley and J. Barnas: “Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling”,Phys. Rev. Lett.,Vol. 63, (1989),pp.664–667.[Crossref]
  • [19] V.V. Gridin, G.R. Hearne and J.M. Honig: “Magnetoresistance extremum at the first-order Verwey transition in magnetite (Fe 3O 4)”,Phys. Rev. B,Vol. 53, (1996),pp.15518–15521.[Crossref]
  • [20] S.B. Ogale, K. Ghosh, R.P. Sharma, R.L. Greene, R. Ramesh and T. Venkatesan: “Magnetotransport anisotropy effects in epitaxial magnetite (Fe 3O 4) thin films”,Phys. Rev. B,Vol. 57, (1998),pp.7823–7828.[Crossref]
  • [21] unpublished results
  • [22] B.D. Cullity:Introduction to magnetic materials, Addison-Wesley, Reading, MA, 1972.
  • [23] D.T. Margulies, F.T. Parker, F.E. Spada, R.S. Goldman, J. Li, R. Sinclair and A.E. Berkowitz: “Anomalous moment and anisotropy behavior inFe 3O 4 films”,Phys. Rev. B,Vol. 53, (1996),pp.9175–9187.[Crossref]
  • [24] H. Takanashi, S. Soeya, J. Hayakawa, K. Ito, A. Kida, C. Yamamoto, H. Asano and M. Matsui, “Fabrication and magnetoresistive effect of current perpendicular to plane devices using half-metallicFe 3O 4 thin films on metallic films,”J. Appl. Phys.,Vol. 93, (2003),pp.8029–8031.[Crossref]
  • [25] S. Chikazumi:Physics of Magnetism, John Wiley and Sons, Inc., New York, 1964.
  • [26] H.B. Callen and E. Callen: “The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)/2 power law”,J. Phys. Chem. Solids, Vol. 27, (1966), pp. 1271–1285.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.