Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 1 | 77-103

Article title

Superconducting states of the cylinder with a single vortex in magnetic field according to the Ginzburg-Landau theory



Title variants

Languages of publication



Self-consistent solutions of the nonlinear Ginzburg-Landau (GL) equations are investigated numerically for a superconducting (SC) cylinder, placed in an axial magnetic field, with a single vortex on the axis (m=1). Two modes, which show the original state of the cylinder, SC or normal (s
0 andn
0), are studied. The field increase (FI) and the field decrease (FD) regimes are studied. The critical fields destroying the SC state withm=1 are found in both regimes. It is shown that in a cylinder of radiusR and GL-parameter ϰ, there exist a number of solutions depending only on the radial co-ordinater corresponding to different states such as M,e, d, p,i, n,
$$\bar n$$
*, and the state diagram on the plane of the variables (ϰ,R) is described. The critical fields corresponding to intrastate transitions and the onset of hysteresis are obtained. The critical fieldH
0(R) dividing the paramagnetic and diamagnetic states of the cylinder withm=1 is determined. The limiting fields of supercooling or superheating of the normal state at which the restoration of the SC state occurs are established. It is shown, that (in both casesm=1,0) there exist two critical parameters,
$$\kappa _0 = {1 \mathord{\left/ {\vphantom {1 {\sqrt 2 = 0.707}}} \right. \kern-\nulldelimiterspace} {\sqrt 2 = 0.707}}$$
$$\kappa _0 = 0.93$$
, which divide bulk SC into three groups (with
$$\kappa< \kappa _0 ,\kappa _0 \leqslant \kappa \leqslant \kappa _c $$
$$\kappa > \kappa _c $$
), in accordance with the behavior in a magnetic field. The parameters
$$\kappa _0 $$
$$\kappa _c $$
mark the boundary for the existence of a supercooled normal
$$\bar n$$
-state in FD-regime and a superheated SC M-state in FI-regime respectively. It is shown, that the value
$$\kappa _* = 0.417$$
, which was claimed in a number of papers as related to type-I superconductors, is illusory.










Physical description


1 - 3 - 2005
1 - 3 - 2005


  • P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia


  • [1] V.L. Ginzburg and L.D. Landau: “To the theory of superconductivity”,Zh. Exp. Teor. Fyz., Vol. 20, (1950), pp. 1064–1082.
  • [2] A.A. Abrikosov:Fundamentals of the Theory of Metals, North-Holland, Amsterdam, 1988.
  • [3] M. Tinkham:Introduction to Superconductivity, McGraw Hill, New York, 1975.
  • [4] P.G. de Gennes:Superconductivity of Metals and Alloys, Addison-Wesley, New York, 1989.
  • [5] D. Saint-James, G. Sarma and E.J. Thomas:Type II superconductivity, Pergamon, Oxford, 1969.
  • [6] G.F. Zharkov: “First and second order phase transitions and magnetic hysteresis in a superconducting plate”,J. Low Temp. Phys., Vol. 130(1/2), (2003), pp. 45–67. http://dx.doi.org/10.1023/A:1021845418088[Crossref]
  • [7] G.F. Zharkov: “Critical fields of a superconducting cylinder”,Centr. Europ. Journ. Phys.,Vol. 2(1), (2004),pp. 220–240 (Erratum: ibid., Vol. 2(2), (2004), p. 419). http://dx.doi.org/10.2478/BF02476282[Crossref]
  • [8] A.Yu. Tsvetkov, G.F. Zharkov and V.G. Zharkov: “Superconducting plate in a magnetic field”,Krat. Soob. Fys. FIAN, Vol. 1/2, (2003), pp. 42–50.
  • [9] G.F. Zharkov, V.G. Zharkov and A.Yu. Tsvetkov: “GL-calculations forsuperconducting cylinder in a magnetic field”,Phys. Rev. B,Vol. 61, (2000),pp. 12293–12312. http://dx.doi.org/10.1103/PhysRevB.61.12293[Crossref]
  • [10] G.F. Zharkov: “The emergence of superconductivity and hystersis in a type-I superconducting cylinder”,Zh. Exp. Teor. Fys., Vol. 122, (2002), pp. 600–609.
  • [11] G.F. Zharkov, V.G. Zharkov and A.Yu. Tsvetkov: “Self-consistent solutions of GL-equations and superconducting edge-states in a magnetic field”,Krat. Soob. Fys. FIAN, Vol. 11, (2001), pp. 35–48; “One-dimensional solutions of GL-equations for superconducting cylinder in magnetic field”,, Vol. 12, (2001), pp. 31–38.
  • [12] G.F. Zharkov: “Transitions of I- and II-order in magnetic field for superconducting cylinder obtained from self-consistent solution of GL-equations”,Phys. Rev. B, Vol. 63, (2001), pp. 224513–224519. http://dx.doi.org/10.1103/PhysRevB.63.224513[Crossref]
  • [13] G.F. Zharkov: “Onset of superconductivity in magnetic field for a long cylinder as obtained from a self-consistent solution of GL-equations”,J. Low Temp. Phys., Vol. 128(3/4), (2002), pp. 87–113. http://dx.doi.org/10.1023/A:1016389709947[Crossref]
  • [14] D. Saint-James and P. de Gennes: “Onset of superconductivity in decreasing field”,Phys. Lett., Vol. 7, (1963), pp. 306–308. http://dx.doi.org/10.1016/0031-9163(63)90047-7[Crossref]
  • [15] D. Saint-James: “Etude du champ critiqueH c3 dans une geometrie cylindrique”,Phys. Lett. Vol. 15, (1965), pp. 13–15. http://dx.doi.org/10.1016/0031-9163(65)91101-7[Crossref]
  • [16] M.A. Abramovitz and I.A. Stegun:Handbook of Mathematical Functions, Dover, New York, 1970.
  • [17] G.F. Zharkov: “Paramagnetic Meissner effect in superconductors from self-consistent solution of GL-equations”,Phys. Rev. B, Vol. 63, (2001), pp. 214502–214509. http://dx.doi.org/10.1103/PhysRevB.63.214502[Crossref]
  • [18] G.F. Zharkov and V.G. Zharkov: “Magnetic vortex in superconducting wire”,Physica Scripta,Vol. 57, (1998),pp. 664–667. http://dx.doi.org/10.1088/0031-8949/57/6/011[Crossref]
  • [19] L.D. Landau and E.M. Lifshits:Fluid Mechanics, Oxford, Pergamon Press, 1982.
  • [20] H.J. Fink and A.G. Presson: “Superheating of the Meissner state and the giant vortex state of a cylinder of finite extent”,Phys. Rev., Vol. 168, (1968), pp. 399–402. http://dx.doi.org/10.1103/PhysRev.168.399[Crossref]
  • [21] J.G. Park: “Critical currents and surface superconductivity”,Phys. Rev. Lett.,Vol. 16, (1966),pp. 1196–1200. http://dx.doi.org/10.1103/PhysRevLett.16.1196[Crossref]
  • [22] J. Feder: “Comments on the supercooling field for superconductors with ϰ values near0.4”,Sol. State. Comm.,Vol. 5, (1967),pp. 299–301. http://dx.doi.org/10.1016/0038-1098(67)90277-3[Crossref]
  • [23] J.G. Park: “Metastable states of the superconducting surface sheath in decreasingfields”,Sol. State. Comm.,Vol. 5, (1967),pp. 645–648. http://dx.doi.org/10.1016/0038-1098(67)90084-1[Crossref]
  • [24] P.V. Cristiansen and H. Smith: “Ginzburg-Landau theory of surface superconductivity and magnetic hysteresis”,Phys. Rev., Vol. 171, (1968), pp. 445–458. http://dx.doi.org/10.1103/PhysRev.171.445[Crossref]
  • [25] J.P. McEnvoy, D.P. Jones and J.G. Park: “Nucleation of superconductivity intantalum in a decreasing magnetic field”,Phys. Rev. Lett.,Vol. 22, (1969),pp. 229–231. http://dx.doi.org/10.1103/PhysRevLett.22.229[Crossref]
  • [26] E.B. Bogomolnyi: “Stability of classical solutions”,Yad. Phys., Vol. 24, (1976), pp. 861–870;Sov. J. Nucl. Phys., Vol. 24(449), (1976).
  • [27] A.T. Dorsey: “Dynamics of interfaces in superconductors”,Annals of Physics,Vol. 233, (1994),pp. 248–269. http://dx.doi.org/10.1006/aphy.1994.1067[WoS][Crossref]
  • [28] I. Luk'yanchuk: “Theory of superconductors with ϰ close to \(\kappa \) ”,Phys. Rev. B, Vol. 63, (2001), pp. 174504–174517. http://dx.doi.org/10.1103/PhysRevB.63.174504[Crossref]
  • [29] S.V. Jampolsky and F.M. Peeters: “Vortex structure of thin mesoscopic disks withenhanced surface superconductivity”,Phys. Rev. B,Vol. 62, (2000),pp. 9663–9674. http://dx.doi.org/10.1103/PhysRevB.62.9663[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.