Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 3 | 535-555

Article title

A bicontinuous structure in some systems with cubic mesophases



Title variants

Languages of publication



A cubic structure of polymer colloid complexes is studied. The technique of the research includes i) an analysis of well-known literature SAXS data; on this basis, ii) constructing a simple model to estimate geometric structure parameters and to obtain a simulated scattering curve; and iii) comparing the model with the real structure obtained from the SAXS data, using the reconstruction of electron density distribution. A bicontinuous structure in cubic mesophases is formed.










Physical description


1 - 9 - 2004
1 - 9 - 2004


  • Department of Polymer Materials, Karpov Institute of Physical Chemistry, ul. Vorontsovo Pole 10, 105064, Moscow, Russia


  • [1] B.A. Parviz, D. Ryan and G.M. Whitesides: “Using self-assembly for the fabrication of nano-scale electron and photonic devices”, IEEE Trans. Adv. Pack. Vol.26, (2003), pp.233–241. http://dx.doi.org/10.1109/TADVP.2003.817971[Crossref]
  • [2] J.M. Lehn: “Supramolecular chemistry-receptors, catalysts, and carriers”, Science, Vol.227, (1985), pp.849–856. http://dx.doi.org/10.1126/science.227.4689.849[Crossref]
  • [3] J.M. Lehn: “Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices”, Angew. Chem. Int. Ed. Engl., Vol.27, (1988), pp.89–112. http://dx.doi.org/10.1002/anie.198800891[Crossref]
  • [4] H. Ringsdorf, B. Schlarb and J. Venzmer: “Molecular architecture and function in polymeric oriented systems. Models for the study of organization, surface recognition, and dynamics in biomembranes”, Angew. Chem., Vol.100, (1988), pp.117–162.
  • [5] H.J. Schneider and H. Durr: Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH, New York, 1993.
  • [6] M. Shibayama and T. Tanaka: “Volume phase transition and related phenomena of polymer gels”, Adv. Polym. Sci., Vol.109, (1993), pp.1–62. [Crossref]
  • [7] A. Klug: “Macromolecular order in biology”, Phil. Trans. Roy. Soc. London, Vol.348A, (1994), pp.167–178.
  • [8] P. Mariani, V. Luzzati and H. Delacroix: “Cubic phases of lipid-containing systems. Structure analysis and biological implications”, J. Mol. Biol., Vol.204, (1988), pp.165–189. http://dx.doi.org/10.1016/0022-2836(88)90607-9[Crossref]
  • [9] R.R. Balmbra, J.S. Clunie andJ.F. Goodman: “Cubic mesomorphic phases”, Nature, Vol.222, (1969), pp.1159–1160. http://dx.doi.org/10.1038/2221159a0[Crossref]
  • [10] L.E. Seriven: “Equilibrium bicontinuous structure”, Nature, Vol.263, (1976), pp.123–125. http://dx.doi.org/10.1038/263123a0[Crossref]
  • [11] M. Antonietti and J. Conrad: “Synthesis of very highly ordered liquid crystalline phases by complex formation of polyacrylic acid with cationic surfactants”, Angew. Chem. Int. Ed. Engl., Vol. 33, (1994), pp. 1869–1870. http://dx.doi.org/10.1002/anie.199418691[Crossref]
  • [12] H. Okuzaki and Y. Osada: “Ordered-aggregate formation by surfactant-charged gelinteraction”, Macromolecules, Vol.28, (1995), pp.380–382. http://dx.doi.org/10.1021/ma00105a054[Crossref]
  • [13] E.L. Sokolov, F. Yeh, A.R. Khokhlov and B. Chu: “Nanoscale supramolecular ordering in gel-surfactant complexes: sodium alkyl sulfates inpoly(diallyldimethylammonium chloride)”, Langmuir, Vol.12, (1996), pp.6229–6234. http://dx.doi.org/10.1021/la960274t[Crossref]
  • [14] A.T. Dembo, A.N. Yakunin, V.S. Zaitsev, A.V. Mironov, S.G. Starodubtsev, A.R. Khokhlov and B. Chu: “Regular microstructures in gel-surfactant complexes: influence of water content and comparison with the surfactant structure in water”, J. Polym. Sci.; Part B; Polym. Phys., Vol.34, (1996), pp.2893–2898. http://dx.doi.org/10.1002/polb.1996.953[Crossref]
  • [15] Y.K. Kwon, S.N. Chvalun, J. Blackwell, V. Percec and J.A. Heck: “Effect of temperature on the supramolecular tubular structure in oriented fibers of apoly(methacrylate) with tapered side groups”, Macromolecules, Vol.28, (1995), pp.1552–1558. http://dx.doi.org/10.1021/ma00109a029[Crossref]
  • [16] V.S.K. Balagurusamy, G. Ungar, V. Percec and G. Johansson: “Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis”, J. Am. Chem. Soc., Vol.119, (1997), pp.1539–1555. http://dx.doi.org/10.1021/ja963295i[Crossref]
  • [17] D.J.P. Yeardley, G. Ungar, V. Percec, M.N. Holerca and G. Johansson: “Spherical Supramolecular Minidendrimers Self-Organized in an “Inverse Micellar”-like Thermotropic Body-Centered Cubic Liquid Crystalline Phase”, J. Am. Chem. Soc., Vol.122, (2000), pp.1684–1689. http://dx.doi.org/10.1021/ja993915q[Crossref]
  • [18] G. Ungar, Y. Liu, X. Zeng, V. Percee and W.-D. Cho: “Giant Supramolecular LiquidCrystal Lattice”, Science, Vol.299, (2003), pp1208–1211. http://dx.doi.org/10.1126/science.1078849[Crossref]
  • [19] X. Zeng, G. Ungar, Y. Liu, V. Percec, A.E. Dulcey and J.K. Hobbs: “Supramoleculardendritic liquid quasicrystals”, Nature, Vol.428, (2004), pp.157–160. http://dx.doi.org/10.1038/nature02368[Crossref]
  • [20] E.L. Thomas, D.B. Alward, D.J. Kinning, D.C. Martin, D.L. Handlin, Jr. and L.J. Fetters: “Ordered bicontinuous double-diamond structure of star blockcopolymers: a new equilibrium microdomain morphology”, Macromolecules, Vol.19, (1986), pp.12197–2202. http://dx.doi.org/10.1021/ma00162a016[Crossref]
  • [21] H. Hasegawa, H. Tanaka, K. Yamasaki and T. Hashimoto: “Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure ofpolystyrene-polyisoprene diblock polymers”, Macromolecules, Vol.20, (1987), pp.1651–1662. http://dx.doi.org/10.1021/ma00173a036[Crossref]
  • [22] M.M. Disko, K.S. Liang, S.K. Behal, R.J. Roe and K.J. Jeon: “Catenoidlamellar phase in blends of styrene-butadiene diblock copolymer and homopolymer”, Macromolecules, Vol.26, (1993), pp.2983–2986. http://dx.doi.org/10.1021/ma00063a053[Crossref]
  • [23] S. Förster, A.K. Khandpur, J. Zhao, F.S. Bates, I.W. Hamley, A.J. Ryan and W. Bras: “Complex phase behavior of polyisoprene-polystyrene diblock copolymers near theorder-disorder transition”, Macromolecules, Vol.27, (1994), pp.6922–6935. http://dx.doi.org/10.1021/ma00101a033[Crossref]
  • [24] M.E. Vigild, K. Almdal, K. Mortensen, I.W. Hamley, J.P.A. Fairclough and A.J. Ryan: “Transformations to and from the gyroid phase in a diblock copolymer”, Macromolecules, Vol.31, (1998), pp.5702–5716. http://dx.doi.org/10.1021/ma9716746[Crossref]
  • [25] B.J. Dair, C.C. Honeker, D.B. Alward, A. Avgeropoulos, N. Hadjichristidis, L.J. Fetters, M. Capel and E.L. Thomas: “Mechanical properties and deformation behavior of the double gyroid phase in unoriented thermoplastic elastomers”, Macromolecules, Vol.32, (1999), pp.8145–8152. http://dx.doi.org/10.1021/ma990666h[Crossref]
  • [26] Yu.V. Khandurina, A.T. Dembo, V.B. Rogacheva, A.B. Zezin and V.A. Kabanov: “Structure of polycomplexes composed of cross-linked sodium polyacrylate and cationic micelle-forming surfactants”, Vysokomol. soed., Vol. 36A, (1994), pp. 235–240 (Polym. Sci., Ser. A, Vol. 36, (1994), p. 189).
  • [27] M. Antonietti, J. Conrad and A. Thünemann: “Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material”, Macromolecules, Vol.27, (1994), pp.6007–6011. http://dx.doi.org/10.1021/ma00099a011[Crossref]
  • [28] Yu.V. Khandurina, V.L. Alexeev, G.A. Evmenenko, A.T. Dembo, V.B. Rogacheva and A.B. Zezin: “On the structure of polyacrylate-surfactant complexes”, J. Phys. II France, Vol. 5, (1995), pp. 337–342. http://dx.doi.org/10.1051/jp2:1995134[Crossref]
  • [29] B. Chu, F. Yeh, E.L. Sokolov, S.G. Starodoubtsev and A.R. Khokhlov: “Interaction of slightly cross-linked gels of poly(diallyldimethylammonium chloride) withsurfactants”, Macromolecules, Vol.28, (1995), pp.8447–8449. http://dx.doi.org/10.1021/ma00128a071[Crossref]
  • [30] A.V. Mironov, S.G. Starodoubtsev, A.R. Khokhlov, A.T. Dembo and A.N. Yakunin: “Ordered nonstoichiometric polymer gel-surfactant complexes in aqueous mediumwith high ionic strength”, Macromolecules, Vol.31, (1998), pp.7698–7705. http://dx.doi.org/10.1021/ma971816w[Crossref]
  • [31] A.V. Mironov, S.G. Starodoubtsev, A.R. Khokhlov, A.T. Dembo and A.N. Yakunin: “Structural study of surfactant aggregates in polyelectrolyte gel”, Colloids Surf., Vol. 147A, (1999), pp. 1213–220.
  • [32] L.M. Bronstein, O.A. Platonova, A.N. Yakunin, I.M. Yanovskaya, P.M. Valetsky, A.T. Dembo, E.E. Makhaeva, A.V. Mironov and A.R. Khokhlov: “Complexes of polyelectrolyte gels with oppositely charged surfactants: interaction with metal ionsand metal nanoparticle formation”, Langmuir, Vol.14, (1998), pp.252–259. http://dx.doi.org/10.1021/la970527y[Crossref]
  • [33] D.I. Svergun, E.V. Shtykova, A.T. Dembo, L.M. Bronstein, O.A. Platonova, A.N. Yakunin, P.M. Valetsky and A.R. Khokhlov: “Size distributions of metal nanoparticles in polyelectrolyte gels”, J. Chem. Phys., Vol.109, (1998), pp.11109–11116. http://dx.doi.org/10.1063/1.477749[Crossref]
  • [34] L.M. Bronstein, O.A. Platonova, A.N. Yakunin, I.M. Yanovskaya, P.M. Valetsky, A.T. Dembo, E.S. Obolonkova, E.E. Makhaeva, A.V. Mironov and A.R. Khokhlov, “Metal colloid formation in the complexes of polyelectrolyte gels with oppositely charged surfactants”, Colloids Surf., Vol. 147A, (1999), pp. 221–231.
  • [35] D.I. Svergun, E.V. Shtykova, M.B. Kozin, V.V. Volkov, A.T. Dembo, E.V. Shtykova, Jr., L.M. Bronstein, O.A. Platonova, A.N. Yakunin, P.M. Valetsky and A.R. Khokhlov: “Small-angle X-ray scattering study of platinum-containing hydrogel/surfactant complexes”, J. Phys. Chem. B, Vol.104, (2000), pp.5242–5250. http://dx.doi.org/10.1021/jp994425n[Crossref]
  • [36] V. Percec, J. Heck, D. Tomazos, F. Falkenberg, H. Blackwell and G. Ungar: “Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecycloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase”, J. Chem. Soc. Perkin Trans. 1, Vol. 22, (1993), pp. 2799–2811. http://dx.doi.org/10.1039/p19930002799[Crossref]
  • [37] V. Percec, J. Heck, G. Johansson, D. Tomazos and G. Ungar: “Towards tobacco mosaic virus-like self-assembled supramolecular architectures”, Makromol. Symp., Vol. 77, (1994), pp. 237–265. [Crossref]
  • [38] V. Percec, G. Johansson, J. Heck, G. Ungar and S. V. Batty: “Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16- octahydro- 1,4,7,10,13-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyl-oxy)benzoate”, J. Chem. Soc. Perkin Trans. 1, Vol. 13, (1993), pp. 1411–1420. http://dx.doi.org/10.1039/p19930001411[Crossref]
  • [39] Y.K. Kwon, S. Chvalun, A.-I. Schneider, J. Blackwell, V. Percec and J.A. Heck: “Supramolecular tubular structures of a polymethacrylate with tapered side groupsin aligned hexagonal phases”, Macromolecules, Vol.27, (1994), pp.6129–6132. http://dx.doi.org/10.1021/ma00099a029[Crossref]
  • [40] S.N. Chvalum, J. Blackwell, J.D. Cho, Y.K. Kwon, V. Percec and J.A. Heck: “X-ray analysis of the internal rearrangement of the self-assembling columnar structureformed by a highly tapered molecule”, Polymer, Vol.39, (1998), pp.4515–4522. http://dx.doi.org/10.1016/S0032-3861(97)10131-8[Crossref]
  • [41] S.N. Chvalun, M.A. Shcherbina, I.V. Bykova, J. Blackwell and V. Percec: “Two- and three-dimensional mesophases formed by monodendrons based on gallic acid with partially fluorinated alkyl tails”, Vysokomol. soed., Ser. A, Vol. 44, (2002), pp. 12134–2143 (Polym. Sci., Ser. A, Vol. 44, (2002), p. 1281).
  • [42] F. Husson, H. Mustacchi and V. Luzzati: “La structure des colloïdes d'association. II. Description des phases liquide-cristallines de plusieurs systèmes amphiphile-eau: amphiphiles anioniques cationiques, non-ioniques”, Acta Cryst., Vol. 13, (1960), pp. 668–677. http://dx.doi.org/10.1107/S0365110X60001576[Crossref]
  • [43] A. Guinier: Théorie et technique de la radiocristallographie, 2nd Ed., Dunod, Paris, 1956.
  • [44] L.D. Landau: “On the theory of phase transitions. II”, Zh. Eksp. Teor. Fiz., Vol. 7, (1937), pp. 627–632.
  • [45] L.D. Landau and E.M. Lifshitz: Statistical Physics, Part 1, 4th revised Ed., Nauka-Fizmatlit, Moscow, 1995.
  • [46] S.A. Brazovskii: “Phase transition of an isotropic system to the heterogeneous state”, Zh. Eksp. Teor. Fiz., Vol. 68, (1975), pp. 175–185 (Sov. Phys. JETP, Vol. 41, (1975), p. 85).
  • [47] S.A. Brazovskii, I.E. Dzyaloshinskii and A.R. Muratov: “Theory of weak crystallization”, Zh. Eksp. Teor. Fiz., Vol.93, (1987), pp.1110–1124 (Sov. Phys. JETP, Vol. 66, (1987), p. 625).
  • [48] L. Leibler: “Theory of microphase separation in block copolymers”, Macromolecules, Vol.13 (1980), pp.1602–1617. http://dx.doi.org/10.1021/ma60078a047[Crossref]
  • [49] I.Ya. Erukhimovich: “Fluctuations and formation of domain structure in heteropolymers”, Vysokomol. soyed., Vol. 24A, (1982), pp. 1942–1949 (Polym. Sci. USSR, Vol. 24, (1982), p. 2223).
  • [50] G.H. Fredrickson and E. J. Helfand: “Fluctuation effects in the theory of microphase separation in block copolymers”, J. Chem. Phys., Vol.87, (1987), pp.697–705. http://dx.doi.org/10.1063/1.453566[Crossref]
  • [51] I.Ya. Erukhimovich and A.R. Khokhlov: “Microphase separation in polymer systems: new approaches and objects”, Vysokomol. soed., Vol. 35A, (1993), pp. 1808–1818 (Polym. Sci., Ser. A, Vol. 35, (1993), p. 1522).
  • [52] A.R. Khokhlov and E.E. Dormidontova: “Self-organization in ion-containing polymer systems”, Usp. Fiz. Nauk, Vol.167, (1997), pp.113–128 (Phys. Usp., Vol. 40, (1997), p. 109). http://dx.doi.org/10.3367/UFNr.0167.199702a.0113[Crossref]
  • [53] J.H. Chen and T.C. Lubensky: “Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions”, Phys. Rev. A, Vol.14, (1976), pp.1202–1207. http://dx.doi.org/10.1103/PhysRevA.14.1202[Crossref]
  • [54] Y. Shapira, C.C. Becerra, N.F. Oliveira, Jr. and T.S. Chang: “Phase diagram, susceptibility, and magnetostriction of MnP: evidence for a Lifshitz point”, Phys. Rev. B., Vol.24, (1981), pp.2780–2806. http://dx.doi.org/10.1103/PhysRevB.24.2780[Crossref]
  • [55] J.F. Joanny and L. Leibler: “Weakly charged polyelectrolytes in a poor solvent”, J. Phys. France, Vol. 51, (1990), pp. 545–557.
  • [56] F.S. Bates, W. Maurer, T.P. Lodge, M.F. Schulz, M.W. Matsen, K. Almdal and K. Mortensen: “Isotropic Lifshitz behavior in block copolymer-homopolymer blends”, Phys. Rev. Lett., Vol.75, (1995), pp.4429–4432. http://dx.doi.org/10.1103/PhysRevLett.75.4429[Crossref]
  • [57] H.W. Diehl and M. Shpot: “Critical behavior ofm-axial Lifshitz points: field-theory analysis and ε-expansion results”, Phys. Rev. B, Vol.62, (2000), pp.12338–12349. http://dx.doi.org/10.1103/PhysRevB.62.12338[Crossref]
  • [58] M. Pleimling and M. Henkel: “Anisotropic scaling and generalized conformal invariance at Lifshitz points”, Phys. Rev. Lett., Vol.87, (2001), pp.125702. (1–4). http://dx.doi.org/10.1103/PhysRevLett.87.125702
  • [59] International Tables for X-ray Crystallography, Vol. A, Kluwer Publishers, Dordrecht, Netherlands, 1995.
  • [60] D.R. Dukeson, G. Ungar, V.S.K. Balagurusamy, V. Percec, G.A. Johansson and M. Glodde: “Application of Isomorphous Replacement in the Structure Determination of a Cubic Liquid Crystal Phase and Location of Counterions”, J. Am. Chem. Soc., Vol.125, (2003), pp.15974–15980. http://dx.doi.org/10.1021/ja037380j[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.