Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2003 | 1 | 2 | 246-257

Article title

Higher harmonics in the voltage on a superconducting wire carrying AC electrical current


Title variants

Languages of publication



The problem of determining the harmonic content in the voltage that appears on a superconducting wire carrying cosine-like AC current was resolved theoretically, using two approaches. First, the Fourier components of the voltage spectrum were found by numerical integration. Importance of individual terms was established, leading to two conclusions: a) it is the cosine component of the 3rd harmonic that represents the bulk of harmonic distortion, b) for the practical purposes it is sufficient to consider higher harmonics with n ≤ 7. Then, the analytical formulas were derived. While for the sine components a general expression containing an infinite series was found, closed-form formulas were derived for the cosine components of the harmonics 1, 3, 5, 7. Consequences of the results to the experimental technique used to study the AC transport properties of superconductors are discussed.










Physical description


1 - 6 - 2003
1 - 6 - 2003


  • Istituto Nazionale per la Fisica della Materia, Dipartimento di Scienza dei Materiali dell'Università Statale di Milano-Bicocca, INFM, Milano, Italy
  • Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cest 9, Bratislava, Slovakia


  • [1] M. Polák, I. Hlásnik, S. Fukui, N. Ikeda, O. Tsukamoto: “Self-field effect and current-voltage characteristics of a.c. superconductors”, Cryogenics, Vol. 34, (1994) pp. 315. http://dx.doi.org/10.1016/0011-2275(94)90112-0[Crossref]
  • [2] S.P. Ashworth: “Measurements of AC losses due to transport current in bismuth superconductors”, Physica, Vol. C 229, (1994), pp. 355.
  • [3] A.N. Ulyanov: “Transport of alternating current and direct current by hard superconductors. critical and resistive state”, J. Appl. Phys., Vol. 85, (1999), pp. 3726. http://dx.doi.org/10.1063/1.369739[Crossref]
  • [4] T. Yamao, M. Hagiwara, K. Koyama, M. Matsuura: “Intergrain ordering of a superconductive ceramic of YBa2Cu4O8 at zero external magnetic field”, J. Phys. Soc. Jpn., Vol. 68., (1999), pp. 871. http://dx.doi.org/10.1143/JPSJ.68.871[Crossref]
  • [5] A.M. Grishin, V.N. Korenivski, K.V. Rao, A.N. Ulyanov: “High-frequency harmonic generation by Bi2Sr2Ca2Cu3Oy ceramic carrying alternating transport current”, Appl. Phys. Lett. Vol. 65, (1994), pp. 487. http://dx.doi.org/10.1063/1.112346[Crossref]
  • [6] L. Ji, H. Sohn, G.C. Spalding, C.J. Lobb M. Tinkham: “Critical-state model for harmonic generation in high-temperature superconductors”, Phys. Rev., Vol. B 40, (1989), pp. 10936. http://dx.doi.org/10.1103/PhysRevB.40.10936[Crossref]
  • [7] T. Ishida and R.B. Goldfarb: “Fundamental and harmonic susceptibilities of YBa2Cu3O7-σ”, Phys. Rev., Vol. B 41, (1990), pp. 8937. http://dx.doi.org/10.1103/PhysRevB.41.8937[Crossref]
  • [8] P. Fabbricatore, S. Farinon, G. Gemme, R. Musenich, R. Parodi, B. Zhang: “Effects of fluxon dynamics on higher harmonics of ac susceptibility in type-II superconductors”, Phys. Rev., Vol. B 50, (1994), pp. 3189. http://dx.doi.org/10.1103/PhysRevB.50.3189[Crossref]
  • [9] M. Polichetti, M.G. Adesso, T. Di Matteo, A. Vecchione, S. Pace: “Detection of flux creep regime in the AC susceptibility curves by using higher harmonic response”, Physica, Vol. C 332, (2000), pp. 378.
  • [10] A. Crisan, A. Iyo, Y. Tanaka, M. Hirai, M. Tokumoto, H. Ihara: “Superconducting properties from AC susceptibility and harmonic generation in CuBa2Ca3Cu4Oy”, Physica, Vol. C 353, (2001), pp. 227.
  • [11] F. Gömöry and R. Tebano: “Low frequency impedance of a round cylindrical wire”, Physica, Vol. C 310, (1998), pp. 116.
  • [12] C.P. Bean: “Magnetization of hard superconductors”, Rev. Mod. Phys., Vol. 36, (1964), pp. 31. http://dx.doi.org/10.1103/RevModPhys.36.31[Crossref]
  • [13] W.T. Norris: “Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets”, J. Phys., Vol. D 3, (1970), pp. 489.
  • [14] E. Martinez, T.J. Hughes, Y. Yang, C. Beduz, L. A. Angurel: “Measurement of AC losses in textured polycrystalline Bi-2212 thin rods”, IEEE Trans. Appl. Superconductivity, Vol. 9, (1999), pp. 805. http://dx.doi.org/10.1109/77.783419[Crossref]
  • [15] K.-H. Müller and K.E. Leslie: “Self-field AC loss of Bi-2223 superconducting tapes”, IEEE Trans. Appl. Superconductivity, Vol. 7, (1997), pp. 306. http://dx.doi.org/10.1109/77.614491[Crossref]
  • [16] R. Tebano, A. Melini, R. Mele, G. Coletta: “Edddy current loss in Ag-sheathed BSCCO tapes in the AC transport regime”, IEEE Trans. Appl. Superconductivity, Vol. 11, (2001), pp. 2757. http://dx.doi.org/10.1109/77.919634[Crossref]
  • [17] F. Gömöry, R. Tebano, J. Souc and S. Farinon: “Generation of Higher Harmonics in Voltage on Superconducting Wire Carrying Cosine-like AC Current”, IEEE Trans. Appl. Superconductivity, Vol. 13, (2003), accepted for publication. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.