Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 2 | 210-234

Article title

The effective absorption cross-section of thermal neutrons in a medium containing strongly or weakly absorbing centres

Content

Title variants

Languages of publication

EN

Abstracts

EN
The structure of a heterogeneous system influences diffusion of thermal neutrons. The thermal-neutron absorption in grained media is considered in the paper. A simple theory is presented for a two-component medium treated as grains embedded in the matrix or as a system built of two types of grains (of strongly differing absorption cross-sections). A grain parameter is defined as the ratio of the effective macroscopic absorption cross-section of the heterogeneous medium to the absorption cross-section of the corresponding homogeneous medium (consisting of the same components in the same proportions). The grain parameter depends on the ratio of the absorption cross-sections and contributions of the components and on the size of grains. The theoretical approach has been verified in experiments on prepared dedicated models which have kept required geometrical and physical conditions (silver grains distributed regularly in Plexiglas). The effective absorption cross-sections have been measured and compared with the results of calculations. A very good agreement has been observed. In certain cases the differences between the absorption in the heterogeneous and homogeneous media are very significant. A validity of an extension of the theoretical model on natural, two-component, heterogeneous mixtures has been tested experimentally. Aqueous solutions of boric acid have been used as the strongly absorbing component. Fine- and coarse-grained pure silicon has been used as the second component with well-defined thermal-neutron parameters. Small and large grains of diabase have been used as the second natural component. The theoretical predictions have been confirmed in these experiments.

Publisher

Journal

Year

Volume

1

Issue

2

Pages

210-234

Physical description

Dates

published
1 - 6 - 2003
online
1 - 6 - 2003

Contributors

  • The Henryk Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342, Kraków, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342, Kraków, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342, Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342, Kraków, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342, Kraków, Poland

References

  • [1] K.H. Beckurts, K. Wirtz: Neutron Physics, Springer, Berlin, 1964.
  • [2] J.A. Czubek, Drozdowicz, B. Gabańska, A. Igielski, E. Krynicka-Drozdowicz, U. Woźnicka: “Advances in absolute determination of the rock matrix absorption cross section for thermal neutrons”, Nucl. Geophys., Vol. 5, (1991) pp. 101–107.
  • [3] K.M. Case, F. Hoffmann, G. Placzek: Introduction to the Theory of Neutron Diffusion. Vol. I. Los Alamos Scientific Laboratory, 1953.
  • [4] J. Molina, M.C. Lopes: “The effect of scattering on thermal neutron self-shielding factors of infinite cylindrical probes”, Kerntechnik, Vol. 51, (1987), pp. 194–196.
  • [5] J. Molina, M.C. Lopes: “A new approach to the neutron self-shielding factor with multiple scattering”, Kerntechnik, Vol. 52, (1988), pp. 197–199.
  • [6] J.A. Czubek, K. Drozdowicz, B. Gabańska, A. Igielski, E. Krynicka, U. Woźnicka: “Thermal neutron macroscopic absorption cross section measurement applied for geophysics”, Progress in Nucl. Energy, Vol. 30, (1996), pp. 295–303. http://dx.doi.org/10.1016/0149-1970(95)00091-7[Crossref]
  • [7] K. Drozdowicz, B. Gabańska, E. Krynicka: “Fitting the decaying experimental curve by a sum of exponentials”, In: Rept. INP No. 1635/AP, Institute of Nuclear Physics, Kraków, 1993.
  • [8] U. Woźnicka: “Solution of the thermal neutron diffusion equation for a two-region system by perturbation calculation”, J. Phys. D: Appl. Phys., Vol. 14, (1981), pp. 1167–1182. http://dx.doi.org/10.1088/0022-3727/14/7/006[Crossref]
  • [9] K. Drozdowicz, U. Woźnicka: “Energy corrections in pulsed neutron measurements for cylindrical geometry”, J. Phys. D: Appl. Phys, Vol. 16, (1983), pp. 245–254. http://dx.doi.org/10.1088/0022-3727/16/3/007[Crossref]
  • [10] K. Drozdowicz, U. Woźnicka: “High-precision thermal neutron diffusion parameters for Plexiglas”, J. Phys. D: Appl. Phys., Vol. 20, (1987), pp. 985–993. http://dx.doi.org/10.1088/0022-3727/20/8/001[Crossref]
  • [11] E. Krynicka, K. Drozdowicz, B. Gabańska, W. Janik, J. Dabrowska: “Measurements of the thermal neutron absorption ∑a of model systems (reference KCl solutions) in two-region geometry”, In: Rept. INP No. 1857/PN Institute of Nuclear Physics, Kraków, 2001,http://www.ifj.edu.pl/reports/bib2001.html
  • [12] K. Drozdowicz, E. Krynicka, U. Woźnicka, A. Igielski, A. Kurowski: “The thermal neutron absorption of mixtures of hydrogenous and non-hydrogenous substances measured in two-region geometry”, Rept. INP No. 1891/PN, Institute of Nuclear Physics, Kraków, 2001,http://www.ifj.edu.pl/reports/bib2001.html
  • [13] Krynicka-E. Drozdowicz: “Standard deviation of the intersection point for two statistically uncertain curve”, Rept. INP No. 1212/PM, Institute of Nuclear Physics, Kraków, 1983.
  • [14] S.F. Mughabghab, M. Divadeenam, N.E. Holden: “Neutron Cross Sections”, Neutron Resonance Parameters and Thermal Cross Sections, Vol. 1. Part A., Academic Press, New York, 1981.
  • [15] K. Drozdowicz, B. Gabańska, A. Igielski, E. Krynicka, U. Woźnicka: “A pulsed measurement of the effective thermal neutron absorption cross-section of a heterogeneous medium”, Ann. Nucl. Energy, Vol. 28, (2001), pp. 519–530. http://dx.doi.org/10.1016/S0306-4549(00)00071-2[Crossref]
  • [16] K. Drozdowicz: “The diffusion cooling coefficient for thermal neutrons in Plexiglas”, J. Phys. D: Appl. Phys., Vol. 31, (1998), pp. 1800–1807. http://dx.doi.org/10.1088/0022-3727/31/15/006[Crossref]
  • [17] J.R. Granada: “Slow-neutron scattering by molecular gases: A synthetic scattering function”, Phys. Rev., Vol. B 31, (1985), pp. 4167–4177. http://dx.doi.org/10.1103/PhysRevB.31.4167[Crossref]
  • [18] J.R. Granada, V.H. Gillette: “A review of a synthetic scattering function approach to the thermal and cold neutron scattering kernels of moderator materials”, J. Neutr. Research, Vol. 7, (1999), pp. 75–85.
  • [19] K. Drozdowicz: “Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media”, Rept. INP No. 1838/PN, Institute of Nuclear Physics, Kraków, 1999.
  • [20] E. Krynicka, B. Gabańska, U. Woźnicka, M. Kosik-Abramczyk: “Measurements of the thermal neutron absorption ∑a of boron of unknown isotopic ratio”, Rept. INP No. 1860/PN, Institute of Nuclear Physics, Kraków, 2000, http://www.ifj.edu.pl/reports/bib2000.html
  • [21] K. Drozdowicz, E. Krynicka: “Thermal neutron diffusion parameters in homogeneous mixtures”, Répt. INP No. 1694/PN, Institute of Nuclear Physics., Kraków, 1995.
  • [22] U. Woźnicka, E. Krynicka, K. Drozdowicz, M. Kosik, W. Janik: “Influence of granulation of the diabase sample on the thermal neutron ∑a measurement”, Rept. INP No. 1893/PN, Institute of Nuclear Physics, Kraków, 2001, http://www.ifj.edu.pl/reports/2001.html
  • [23] B. Gabańska, E. Krynicka, U. Woźnicka: “Effect of a crushing degree of the rock sample on the thermal neutron absorption cross section measurement”, Nafta-Gaz, Vol. 5, (2002), pp. 231–239.
  • [24] A. Polański, K. Smulikowski: Geochemia, Wyd. Geologiczne, Warszawa, 1969, pp. 60.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476293
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.