Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 2 | 1 | 204-219

Article title

A system of units compatible with geometry

Content

Title variants

Languages of publication

EN

Abstracts

EN
Alternative system of fundamental units: length, time, action, electrical charge is presented instead of the present one: length, time, mass and electrical current. It contains more quantities which are scalars under scalings. Then it is possible to recognize from the unit, what kind of a geometric quantity is a given physical quantity. This is the reason why the new system of units is called compatible with geometry.

Publisher

Journal

Year

Volume

2

Issue

1

Pages

204-219

Physical description

Dates

published
1 - 3 - 2004
online
1 - 3 - 2004

Contributors

  • Institute of Theoretical Physics, Wrocław University, pl. Maksa Borna 9, PL-50-204, Wrocław

References

  • [1] J.A. Schouten: Tensor Analysis for Physicists, Dover Publ., New York, 1989.
  • [2] E.J. Post: “Physical dimensions and covariance”, Found. Phys., Vol. 12, (1982), pp. 169–195. http://dx.doi.org/10.1007/BF00736847[Crossref]
  • [3] C. Misner, K. Thorne and J.A. Wheeler: Gravitation, Freeman and Co., San Francisco, 1973.
  • [4] W.L. Burke: “Spacetime, Geometry, Cosmology, University Science Books, Mill Valley, 1980.
  • [5] W.L. Burke: Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
  • [6] P. Lounesto, R. Mikkola and V. Vierros. J. comp. Math. Sci. Teach., Vol. 9, (1989), pp. 93.
  • [7] B. Jancewicz: “A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisttropic media”, Ann. of Phys., Vol. 245, (1996), pp. 227–274. http://dx.doi.org/10.1006/aphy.1996.0009[Crossref]
  • [8] B. Jancewicz: “The extended Grassmann algebra ofR 3”, In: W.E. Baylis (Ed.): Clifford (Geometric) Algebras, Birkhäuser, Boston, 1996, pp. 389–421.
  • [9] P.A.M. Dirac: “The monopole concept”, Int. J. Theor. Phys., Vol. 17, (1978), pp. 235–247 http://dx.doi.org/10.1007/BF00672870[Crossref]
  • [10] C. von Westensholz: Differential Forms in Mathematical Physics, North-Holland, Amsterdam, 1978.
  • [11] K. von Klitzing, G. Dorda, M. Pepper: “New method for high accuracy determination of the fine structure constant based on quantized Hall resistance”, Phys. Rev. Lett., Vol. 45, (1980), pp. 494–497. http://dx.doi.org/10.1103/PhysRevLett.45.494[Crossref]
  • [12] T. Fulton, F. Rohrlich, L. Witten: “Conformal invariance in physics”, Rev. Mod. Phys., Vol. 34, (1962), pp. 442–457. http://dx.doi.org/10.1103/RevModPhys.34.442[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476281
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.