Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 2 | 1 | 147-159

Article title

Fowler-nordheim tunnelling in Au−TiO2−Ag film structures

Content

Title variants

Languages of publication

EN

Abstracts

EN
I-V-characteristics have been measured for Au−TiO2−Ag structures with TiO2 layers of 30 and 180 nm thickness. The TiO2 films were grown by atomic layer deposition (ALD) technique. In the case of negative bias on the Au electrode, the conduction currents through TiO2 layers follow the Fowler-Nordheim formula for field emission over several orders of magnitude. The bulk of the currents may be attributed to tunnelling, seemingly through a Schottky barrier at the Au−TiO2 junction. In the case of reversed polarity the currents are also observed, but cannot be interpreted as tunnelling.

Publisher

Journal

Year

Volume

2

Issue

1

Pages

147-159

Physical description

Dates

published
1 - 3 - 2004
online
1 - 3 - 2004

Contributors

author
  • Institute of Physics, University of Tartu, Riia 142, 51014, Tartu, Estonia
author
  • Institute of Physics, University of Tartu, Riia 142, 51014, Tartu, Estonia
author
  • Institute of Experimental Physics and Technology, University of Tartu, Tähe 4, 51010, Tartu, Estonia
author
  • Institute of Physics, University of Tartu, Riia 142, 51014, Tartu, Estonia
author
  • Institute of Experimental Physics and Technology, University of Tartu, Tähe 4, 51010, Tartu, Estonia
author
  • Institute of Physics, University of Tartu, Riia 142, 51014, Tartu, Estonia

References

  • [1] J. Sheng, N. Yoshida, J. Karasawa and T. Fukami: “Platinum doped titania film oxygen sensor integrated with temperature compensating thermistor”, Sens. Actuators B, Vol. 41, (1997), pp. 131–136. http://dx.doi.org/10.1016/S0925-4005(97)80285-7[Crossref]
  • [2] M. Kadoshima, M. Hiratani and al.: “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, Vol. 424, (2003), pp. 224–228. http://dx.doi.org/10.1016/S0040-6090(02)01105-7
  • [3] E.W. McFarland and J. Tang: “A photovoltaic device structure based on internal electron emission”, Nature, Vol. 421, (2003), pp. 616–618. http://dx.doi.org/10.1038/nature01316[Crossref]
  • [4] V. Repän, M. Laan, P. Paris, J. Aarik and V. Sammelselg: “Negative coronas: low current mode-pulse mode transition”, Czech. J. of Phys., Vol. 49, (1999), pp. 217–224. http://dx.doi.org/10.1023/A:1022854028712[Crossref]
  • [5] V.T. Binh and Ch. Adessi: “New mechanism for electron emission from planar cold cathodes: the solid-state field-controlled electron emitter”, Phys. Rev. Lett., Vol. 85, (2000), pp. 864–867. http://dx.doi.org/10.1103/PhysRevLett.85.864[Crossref]
  • [6] V.T. Binh, V. Semet and J.P. Dupin: “Novel electron sources”, Electrochem. Soc. Proc., Vol. 2000, (2001), pp. 157–166.
  • [7] J. Aarik, A. Aidla, H. Mändar, T. Uustare and V. Sammelselg: “Anomalous effect of temperature on atomic layer deposition of titanium dioxide”, J. Crystal Growth, Vol. 220, (2000), pp. 531–537. http://dx.doi.org/10.1016/S0022-0248(00)00897-6[Crossref]
  • [8] J. Aarik, A. Aidla, H. Mändar, T. Uustare and V. Sammelselg: “Influence of structure development on atomic layer deposition of TiO2 thin films”, Appl. Surf. Sci., Vol. 181, (2001), pp. 339–348. http://dx.doi.org/10.1016/S0169-4332(01)00430-5[Crossref]
  • [9] M. Alvisi, G. Leo, A. Rizzo, L. Tapfer and L. Vasanelli: “Surface and interface morphology of thin oxide films investigated by X-ray reflectivity and atomic force microscopy”, Surface and Coatings Technology, Vol. 100–101, (1998), pp. 76–79. http://dx.doi.org/10.1016/S0257-8972(97)00591-4[Crossref]
  • [10] J.G. Simmons: “Conduction in thin dielectric films”, J. Phys. D: Appl. Phys., Vol. 4, (1971), pp. 613–657. http://dx.doi.org/10.1088/0022-3727/4/5/202[Crossref]
  • [11] R.G. Forbes: “Refining the application of Fowler-Nordheim theory”, Ultramicroscopy, Vol. 79, (1999), pp. 11–23. http://dx.doi.org/10.1016/S0304-3991(99)00097-2[Crossref]
  • [12] E.H. Snow: “Fowler-Nordheim tunneling in SiO2 films”, Solid State Comm., Vol. 5, (1967), pp. 813–815. http://dx.doi.org/10.1016/0038-1098(67)90715-6[Crossref]
  • [13] M. Lenzlinger and E.H. Snow: “Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., Vol. 40, (1969), pp. 278–283. http://dx.doi.org/10.1063/1.1657043[Crossref]
  • [14] G. Lewicki and C.A. Mead: “Currents through thin films of aluminium nitride”, J. Chem. Phys. Solids, Vol. 29, (1968), pp. 1255–1267. http://dx.doi.org/10.1016/0022-3697(68)90218-7[Crossref]
  • [15] V.V. Zhirnov, G.J. Wojak, W.B. Choi, J.J. Cuomo and J.J. Hren: “Wide band gap materials for field emission devices”, J. Vac. Sci. Technol. A, Vol. 15, (1997), pp. 1733–1738. http://dx.doi.org/10.1116/1.580929[Crossref]
  • [16] S.A. Fridrikhov and S.M. Movnin: Physical foundations of electronics, Vyshaya Shkola, Moscow, 1982, pp. 454, (In Russian).
  • [17] N.S. Xu, Jun Chen and S.Z. Deng: “Physical origin of nonlinearity in the Fowler-Nordheim plot of field-induced emission from amorphous diamond films: Thermionic emission to field emission”, Appl. Phys. Lett., Vol. 76, (2000), pp. 2463–2465. http://dx.doi.org/10.1063/1.126377[Crossref]
  • [18] E.L. Murphy and R.H.Jr. Good: “Thermionic emission, field emission, and the transition region”, Phys. Rev., Vol. 102, (1956), pp. 1464–1473. http://dx.doi.org/10.1103/PhysRev.102.1464[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476278
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.