PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2004 | 2 | 1 | 132-146
Article title

On the mechanism of the runaway of electrons in a gas: The upper branch of the paschen curve

Content
Title variants
Languages of publication
EN
Abstracts
EN
Basing on the simulation results, it is shown that the Townsend mechanism of electron multiplication in a gas at sufficiently large interelectrode distances is valid at least up to such large values of E/p at which relativistic electrons are generated. Correspondingly, the runaway electron producing in a gas is determined not by the local criteria accepted presently, but by the ratio of interelectrode distance and the characteristic electron multiplication length. It is shown that the critical discharge voltage U, at which the runaway electrons appear in a given gas, is a function of the product of the interelectrode distance by the gas pressure. This function (U-pd dependence) defines not only well-known Paschen curve but also an additional branch, which describes the absence of a self-sustained discharge at a high voltages sufficiently rapidly supplied across the electrodes. Critical discharge voltage dependence for helium and xenon are presented.
Publisher
Journal
Year
Volume
2
Issue
1
Pages
132-146
Physical description
Dates
published
1 - 3 - 2004
online
1 - 3 - 2004
References
  • [1] R.G. Giovanelli: “Electron Energies resulting from an Electric Field in a Higly Ionized Gas”, Philos. Mag., Vol. 40, (1949), pp. 206–214.
  • [2] H. Dreicer: “Electron and Ion Runaway in a Fully Ionized Gas. I, II.”, Phys. Rev., Vol. 115, (1959), pp. 238–249; Phys. Rev., Vol. 117, (1960), pp. 329–342. http://dx.doi.org/10.1103/PhysRev.115.238[Crossref]
  • [3] R.M. Kurlsrud, Y.C. Sun, N.K. Winson, and H.A. Fallon: “Runaway Electrons in a Plasma”, Phys. Rev. Lett., Vol. 31, (1973), pp. 690–693. http://dx.doi.org/10.1103/PhysRevLett.31.690[Crossref]
  • [4] A.V. Gurevich: “On the theory of runaway electrons”, Zh. Éksp. Teor. Fiz., Vol. 39, (1960), pp. 1296–1307; Sov. Phys. JETP, Vol. 12, (1960), pp. 904–912.
  • [5] V.S. Marchenko and S. I. Yakovlenko: “About influence of deviation of electron distributions from Maxwell distribution on a degree of ionization and accuracy of diagnostics of impurity in plasma with Joule heating”, Fiz. Plazmy (Moscow) Vol. 5, (1979), pp. 590–599; Sov. J. Plasma Phys., Vol. 5, (1979), pp. 331–340.
  • [6] L.P. Babich, T.V. Loiko and V.A. Tsukerman: “High-voltage nanosecond discharge in dense gases at big overvoltage, developing in a mode of electron runaway”, Usp. Fiz. Nauk, Vol. 160(7), (1990), pp. 49–82; Sov. Phys. Usp., Vol. 33, (1990), pp. 521–560. [Crossref]
  • [7] Yu.D. Korolev and G.A. Mesyats: The Physics of Pulse Breakdown, Nauka, Moscow, 1991.
  • [8] G.V. Kolbychev, P.D. Kolbycheva and I.V. Ptashnik: “Glow discharge with runaway electrons at borderline voltage”, Zh. Tekh. Fiz., Vol. 66(2), (1996), pp. 59–64; Tech. Phys., Vol. 41, (1996), pp. 144–148.
  • [9] A.R. Sorokin: “Forming of electron beams in open discharge”, Pis'ma Zh. Tekh. Fiz., Vol. 26(24) (2000), pp. 89–94; Tech. Phys. Lett., Vol. 26, (2000), pp. 721–725.
  • [10] A.R. Sorokin: “Whether the open discharge photoelectronic is?’, Pis'ma Zh. Tekh. Fiz., Vol. 28(9), (2002), pp. 14–21; Tech. Phys. Lett., Vol. 28, (2002), pp. 361–367.
  • [11] A.P. Bokhan and P.A. Bokhan: “The mechanism of the anomalous high efficiency of an electronic beam generation in the open discharge”, Pis'ma Zh. Tekh. Fiz., Vol. 28(11), (2002), pp. 21–27; Tech. Phys. Lett., Vol. 28, (2002), pp. 454–459.
  • [12] V.I. Derzhiev, V.F. Tarasenko, S.I. Yakovlenko and A.M. Yancharina: “Penning plasma lasers on transitions in helium and a neon”, In: S.I. Yakovlenko (Ed.): Plasma Lasers of Visual and Near Ultraviolet Ranges, Nauka, Moscow, 1989, pp. 5–43.
  • [13] S.I. Yakovlenko: “Gas and plasma lasers”, In: V.E. Fortov (Ed.): An Encyclopedia of Low-Temperature Plasma, Nauka/Interperiodika, Moscow, 2000, p. 262–291.
  • [14] Yu.P. Raizer: The Physics of Gas Discharge, 2nd Ed., Nauka, Moscow, 1992.
  • [15] A.N. Tkachev and S.I. Yakovlenko: “Cathode layer parameters in high-pressure Xe excilamp”, Proc. SPIE, Vol. 4747, (2002), pp. 271–278; Laser Phys. Vol. 12(7), (2002), pp. 1022–1028.
  • [16] E. Krishnakumar and S.K. Srivastava: “Ionization cross sections of rare-gas atoms by electron impact”, J. Phys. B, Vol. 21(6), (1988), pp. 1055–1082. http://dx.doi.org/10.1088/0953-4075/21/6/014[Crossref]
  • [17] D.V. Fursa and I. Bray: “Calculation of electron-helium scattering”, Phys. Rev. A, Vol. 52(2), (1995), pp. 1279–1297. http://dx.doi.org/10.1103/PhysRevA.52.1279[Crossref]
  • [18] J.C. Nickel, K. Imre, D.F. Register and S. Trajmar: “Total electron scattering cross sections: I. He, Ne, Ar, Xe”, J. Phys. B, Vol. 18(1), (1985), pp. 125–133. http://dx.doi.org/10.1088/0022-3700/18/1/015[Crossref]
  • [19] A.L. Ward: “Calculation of Cathode-Fall Characteristics”, Jorn. Appl. Physics. V., Vol. 33(9), (1962), pp. 2789–2794. http://dx.doi.org/10.1063/1.1702550[Crossref]
  • [20] F.M. Penning: “Nieuwe metingen over de doorslagspanningen van edelgassen”, Physica. V., Vol. 12(4), (1932), pp. 65–81.
  • [21] A.N. Dikdji and B.N. Kl'anfeld: “Voltage of the discharge ignition in He, Ne, Ar, Kr and Xe at low pressures”, Pis'ma Zh. Tekh. Fiz., Vol. 28(6), (1955), pp. 1038–1044.
  • [22] L.G. Guseva and B.N. Kl'anfeld: “Voltage of the discharge ignition in mercury vapours”, Pis'ma Zh. Tekh. Fiz., Vol. 24(7), (1954), pp. 1169–1178.
  • [23] A.N. Tkachev and S.I. Yakovlenko: “On the mechanismof the runaway of electrons in a gas”, JETP Letters, Vol. 77(5), (2003), pp. 221–225. http://dx.doi.org/10.1134/1.1574835[Crossref]
  • [24] V.F. Tarasenko, S.I. Yakovlenko, V.M. Orlikovskii, A.N. Tkachev and S.A. Shunailov: “Production of Powerful Electron Beams in Dense Gases”, JETP Letters, Vol. 77(11), (2003), pp. 611–615. http://dx.doi.org/10.1134/1.1600816[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02476277
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.