Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 1 | 104-119

Article title

Glass-forming ability and thermal stability of Fe62Nb8−xZrxB30 and Fe72Zr8B20 amorphous alloys?


Title variants

Languages of publication



Glass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, Tg, and the crystallization peak temperature, Tp, display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower Tg and Tx temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between Tg and Tx suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.










Physical description


1 - 3 - 2004
1 - 3 - 2004


  • Department of General Physics, Eötvös University, P.O.B. 32, H-1518, Budapest, Hungary
  • Department of General Physics, Eötvös University, P.O.B. 32, H-1518, Budapest, Hungary
  • Research Institute for Solid State Physics and Optics, P.O.B. 49, H-1525, Budapest, Hunaarian Academy of Sciences, Hungary
  • Department of General Physics, Eötvös University, P.O.B. 32, H-1518, Budapest, Hungary


  • [1] S.J. Pang, T. Zhang, K. Asami and A. Inoue: “Synthesis of Fe−Cr−Mo−C−B−P bulk metallic glasses with high corrosion resistance”, Acta Mater., Vol. 50, (2002), pp. 489. http://dx.doi.org/10.1016/S1359-6454(01)00366-4[Crossref]
  • [2] V.I. Tkatch, A.M. Grishin and S.I. Khartev: “Delayed nucleation in Fe40Co40P14B6 metallic glass”, Mater. Sci. Eng., Vol. 337, (2002), pp. 187. http://dx.doi.org/10.1016/S0921-5093(02)00021-7[Crossref]
  • [3] H. Grahl, S. Roth, J. Eckert and L. Schultz: “Stability and magnetic properties of Fe-based amorphous alloys with supercooled liquid region”, Magn. Magn. Mater., Vol. 254, (2003), pp. 23. http://dx.doi.org/10.1016/S0304-8853(02)00738-2[Crossref]
  • [4] A. Inoue: “Bulk Amorphous Alloys, Preparation and Fundamental Characteristics”, Mater. Sci. Foundations, Vol. 4, (1998), pp. 3.
  • [5] Z.P. Lu and C.T. Liu: “A new glass-forming ability criterion for bulk metallic glasses”, Acta Mater., Vol. 50, (2002), pp. 3501. http://dx.doi.org/10.1016/S1359-6454(02)00166-0[Crossref]
  • [6] T.D. Shen and R.B. Schwarz: “Bulk ferromagnetic glasses prepared by flux melting and water quenched”, J. Appl. Pys., Vol. 81, (1997), pp. 9328.
  • [7] J. Labar: “Process Diffraction: A computer program to process electron diffraction patterns from polycrystalline or amorphous samples”, In: L. Frank and F. Ciampor (Eds.): Proc. EUREM 12, Brno, Vol. 3, Brno, 2000, pp. 1397.
  • [8] D.S. dos Santos and D.R. dos Santos: “Crystallization kinetics of Fe−B−Si metallic glasses”, J.Non-Cryst.Sol., Vol. 304, (2002), p. 56. http://dx.doi.org/10.1016/S0022-3093(02)01004-9[Crossref]
  • [9] I.C. Rho, C.S. Yoon, C.K. Kim, T.Y. Byun and K.S. Hong: “Microstructure and crystallization kinetics of amorphous metallic alloy: Fe54Co26Si6B14”, J. Non-Cryst. Sol., Vol. 316, (2003), pp. 289. http://dx.doi.org/10.1016/S0022-3093(02)01625-3[Crossref]
  • [10] H.E. Kissinger: “Reaction kinetics in differential thermal analysis”, Anal. Chem., Vol. 29, (1957), pp. 1702. http://dx.doi.org/10.1021/ac60131a045[Crossref]
  • [11] M. Gogebakna, P.J. Warren and B. Cantor: “Crystallization behavior of Al85Y11Ni4 alloy”, Mater. Sci. Eng., Vol. 226, (1997), pp. 168. http://dx.doi.org/10.1016/S0921-5093(96)10611-0[Crossref]
  • [12] M. Avrami: “Kinetics of phase change. III”, Chem. Phys.,. Vol. 9, (1941), pp. 177. http://dx.doi.org/10.1063/1.1750872[Crossref]
  • [13] Y.J. Liu and I.T.H. Chang: “The correlation of microstructural development and thermal stability of mechanically alloyed multicomponent Fe−Co−Ni−Zr−B alloys”, Acta Mater., Vol. 50, (2002), pp. 2747. http://dx.doi.org/10.1016/S1359-6454(02)00118-0[Crossref]
  • [14] J.W. Christian: “The Theory of Transformations in Metals and Alloys”, 2nd Ed., Pergamon, Oxford, United Kingdom, 1975.
  • [15] D.H. Ping, K. Hono, H. Kanekiyo and S. Hirosawa: “Microstructure evolution of Fe3B/Nd2Fe14B nanocomposite magnets microalloyed with Cu and Nb”, Acta Mater., Vol. 47, (1999), pp. 4641. http://dx.doi.org/10.1016/S1359-6454(99)00330-4[Crossref]
  • [16] M. Imafuku, S. Sato, H. Koshiba, E. Matsubara and A. Inoue: “Structural variation of Fe−Nb−B metallic glasses during crystallization process”, Scripta Mater., Vol. 44, (2001), pp. 2369. http://dx.doi.org/10.1016/S1359-6462(01)00776-X[Crossref]
  • [17] A.K. Panda, B. Ravikumar, S. Basu and A. Mitra: “Crystallization and soft magnetic properties of rapidly solidified Fe73.5Nb3Cu1Si22.5−xBx alloys”, Magn. Magn. Mater., Vol. 260, (2003), pp. 70. http://dx.doi.org/10.1016/S0304-8853(02)01092-2[Crossref]
  • [18] H.P. Klug and L.E. Alexander: “X-ray diffraction procedes for polycrystalline and amorphous materials”, Wiley, New York, 1974.
  • [19] H. Natter, M. Schmelzer, M.S. Loffler, C.E. Krill, A. Fitch and R. Hempelmann: “Grain-growth kinetics and nanocrystalline iron studied in situ by synchrotron realtime X-ray diffraction, Phys. Chem., Vol. 104, (2000), pp. 2467.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.