Preferences help
enabled [disable] Abstract
Number of results
2005 | 3 | 1 | 198-215
Article title

Prediction of the unit cell edge length of cubic A22+BB′O6 perovskites by multiple linear regression and artificial neural networks

Title variants
Languages of publication
The unit cell edge length, a, of a set of complex cubic perovskites having the general formula A22+BB′O6 is predicted using two methodologies: multiple linear regression and artificial neural neworks. The unit cell edge length is expressed as a function of six independent variables: the effective ionic radii of the constituents (A, B and B′), the electronegativities of B and B′, and the oxidation state of B. In this analysis, 147 perovskites of the A22+BB′O6 type, having the cubic structure and belonging to the Fm3m space group, are included. They are divided in two sets; 98 compounds are used in the calibration set and 49 are used in the test set. Both models give consistent results and could be successfully use to predict the lattice cell parameter of new members of this series.
Physical description
1 - 3 - 2005
1 - 3 - 2005
  • [1] F.S. Galasso (Ed.): Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon Press, Oxford., 1969 (and references therein).
  • [2] E.J. Baran: “Structural chemistry and physicochemical properties of perovskite-like Materials”, Catalysis Today, Vol 8, (1990), pp. 133–151 (and the references therein).[Crossref]
  • [3] P.W. Barnes: Exploring structural changes and distortions in quaternary perovskites and defect pyrochlores using powder diffraction techniques, Thesis(PhD), The Ohio State University, 2003.
  • [4] R.H. Butner and E.N. Maslen: “Electron difference density and structural parameters in CaTiO3”, Acta Cryst. B, Vol. 48, (1992), pp. 644–649.[Crossref]
  • [5] O. Fukunaga and T. Fujita: “The relationship between ionic radii and cell volumes in the perovskite compounds”, J. Solid State. Chem., Vol. 8, (1973), pp. 331–338.[Crossref]
  • [6] D.M. Giaquinta and H. Conrad zur Loye: “Structural predictions in the ABO3 phase diagram”, Chem. Mater., Vol. 6, (1994), pp. 365–372.
  • [7] N.W. Thomas: “A new global parameterization of perovskite structures”, Acta Cryst. B, Vol. 54, (1998), pp. 585–594.[Crossref]
  • [8] A.A. Bokov, N.P. Protsenko and Z.-G. Ye: “Relationship between ionicity ionic radii and order/disorder in complex perovskites”, J. Phys. Chem. Solids, Vol. 61, (2000), pp. 1519–1527.[Crossref]
  • [9] M.W. Lufaso and P.M. Woodward: “Prediction of the crystal structure of perovskites using the software program SpuDS”, Acta Cryst. B, Vol. 57, (2001), pp. 725–738.[Crossref]
  • [10] L. Chonghe, T. Yihao, Z. Yingzhi, W. Chunmei and W. Ping: “Prediction of lattice constants in perovskites of GdFeO3 structure”, J. Phys. Chem. Solids, Vol. 64, (2003), pp. 2147–2156.[Crossref]
  • [11] V. Petruševski and S. Aleksovska: “Correlations between effective crystal radii and unit cell volume in Tutton salts”, Croat. Chem. Acta, Vol. 64(4), (1991), pp. 577–583.
  • [12] V. Petruševski and S. Aleksovska: “Structural correlations in alums”, Croat. Chem. Acta, Vol. 67, (1994), pp. 221–230.
  • [13] S. Aleksovska, V. Petruševski and Lj. Pejov: “Crystal structures of members in isostructural series: prediction of the crystal structure of Cs2MnO4-a β-K2SO4 type isomorph”, Croat. Chem. Acta, Vol. 70, (1997), pp. 1009–1019.
  • [14] S. Aleksovska, S.C. Nyburg, Lj. Pejov and V.M. Petruševski: “β-K2SO4 type isomorphs: prediction of structure and refinement of Rb2CrO4”, Acta Cryst. B., Vol. 54, (1998), pp. 115–120.
  • [15] S. Aleksovska, V.M. Petruševski and B. Šoptrajanov: “Calculation of structural parameters in isostructural series: the kieserite group”, Acta Cryst. B, Vol. 54, (1998), pp. 564–567.[Crossref]
  • [16] V.M. Petruševski and S. Aleksovska: “Dependence of the crystal structure parameters on the size of the structural units in some isomorphous/isostructural series”, Croat. Chem. Acta, Vol. 72(1), (1999), pp. 71–76.
  • [17] I. Kuzmanovski and S. Aleksovska: “Optimization of artificial neural networks for prediction of the unit cell parameters in orthorhombic perovskites. Comparison with multiple linear regression”, Chemometr. Intell. Lab. Syst., Vol. 67, (2003), pp. 167–174.[Crossref]
  • [18] K.E. Stitzer, M.D. Smith and H.-C. zur Loye: “Crystal growth of Ba2MOsO6 (M=Li, Na) from reactive hydroxy fluxes”, Solid State Sciences, Vol. 4, (2002), pp. 311–316.[Crossref]
  • [19] Y. Izumiyama, Y. Doi, M. Wakeshima, Y. Hinatsu, A. Nakamura and Y. Ishii: “Magnetic and calorimetric studies on ordered perovskite Ba2ErRuO6”, J. Solid State Chem., Vol. 169(1), (2002), pp. 125–130.[Crossref]
  • [20] S.B. Kim, B.W. Lee and C.S. Kim: “Neutron and Mössbauer studies of the double perovskite A2FeMoO6 (A=Sr and Ba)”, J. Magn. and Magn. Mater., Vol. 242–245, (2002), pp. 747–750.[Crossref]
  • [21] J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal and D.D. Sarma. “Structural and doping effects in the half metallic double perovskite A2CrWO6”, Phys. Rev. B, Vol. 68, (2003), pp. 144431–144445.[Crossref]
  • [22] W.T. Fu and D.J.W. Ijdo: “On the Structure of BaTl0.5Sb0.5O3: An Ordered Perovskite”, J. Solid State Chem., Vol. 128, (1997), pp. 323–325.
  • [23] W. Dmowski, M.K. Akbas, P.K. Davies and T. Egami: “Local structure of Pb(Sc1/2Ta1/2)O3 and related structures”, J. Phys. Chem. Solids, Vol. 61, (2000), pp. 229–237.[Crossref]
  • [24] D.-Y. Jung, G. Demazeau and J.-H. Chof: “Iridium(III) stabilized in oxygen lattices of perovskite structure Sr2MIrIII O6 (M=Nb, Ta)”, J. Mater. Chem., Vol. 5(3), (1995), pp. 517–519.[Crossref]
  • [25] P.E. Kazin, A.M. Abakumov, D.D. Zaytsev, Yu.D. Tretyakov, N.R. Khasanova, G. Van Tendeloo and M. Jansen: “Synthesis and crystal structure of Sr2ScBiO6”, J. Solid State Chem., Vol. 162(1), (2001), pp. 142–147.[Crossref]
  • [26] H.W. Eng: The crystal and electronic structures of oxides containing d 0transition metals in octahedral coordination, ‘Thesis (PhD), The Ohio State University, 2003.
  • [27] Y. Teraoka, M.-D. Wei and S. Kagawa: “Double perovskites containing hexavalent molybdenum and tungsten: synthesis, structural investigation and proposal of fitness factor to discriminate the crystal symmetry”, J. Mater. Chem., Vol. 8(11), (1998), pp. 2323–2325.[Crossref]
  • [28] M.J. Martínez-Lope, J.A. Alonso, M.T. Casais and M.T. Fernández-Díaz: “Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B=Mo, W)”, Europian J. Inorg. Chem., Vol. 2002(9), (2002), pp. 2463–2469.<2463::AID-EJIC2463>3.0.CO;2-J[Crossref]
  • [29] A.K. Azad, S.-G. Eriksson, S.A. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen and H. Rundlöf: “Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr)”, J. Alloys and Comp., Vol. 364(1–2), (2004), pp. 77–82.[Crossref]
  • [30] C.M. Lapa, Y.P. Yadava, R.A. Sanguinetti Ferreira, J. Albino Aguiar, C.L. Da Silva, D.P.F. De Souza: “Production, sintering and microstructural characteristics of Ba2NiWO6 complex perovskite oxide ceramics”, Acta Microscopica, Vol. 12 Supplement C, (2003) (XIX Congress of the Brazilian Society for Microscopy and Microanalysis), pp. 77–78.
  • [31] S.-O. Lee, T.Y. Cho and S.-H. Byeon: “Magnetic propertiy of oxide with the perovskite structure, A2Fe(III)BO6 (A=Ca, Sr, Ba and B=Sb, Bi)”, Bull. Korean Chem. Soc., Vol. 18(1), (1997), pp. 91–97.
  • [32] G. Baldinozzi, Ph. Scian, M. Pinot and D. Grebille: “Crystal structure of the antiferroelectric perovskite Pb2MgWO6”, Acta Cryst. B, Vol. 51, (1995), pp. 668–673.[Crossref]
  • [33] V. Primo-Martín and M. Jansen: “Synthesis, Structure, and Physical Properties of Cobalt Perovskites: Sr3CoSb2O9 and Sr2CoSbO6-δ”, J. Solid State Chem., Vol. 157, (2001), pp. 76–85.[Crossref]
  • [34] R.D. Shannon: “Revised effective ionic radii in halides and chalcogenides”, Acta Cryst. A, Vol. 32, (1976), pp. 751–767.[Crossref]
  • [35] D.R. Lide: Handbook of Chemistry and Physics, CRC Press/Chapman and Hall, Boca Raton, FL/London, 2002. [Crossref]
  • [36] STATGRAPHICS PLUS, VER, 3.0, Statistical Graphics Package, Educational Institution edition, Statistical Graphics, 1994–1997.
  • [37] A. Bos, M. Bos and W.E. van der Linden: “Artificial neural networks as a tool for soft-modelling in quantitative analytical chemistry: the prediction of the water content of cheese”, Anal. Chim. Acta, Vol. 256, (1992), pp. 133–144.[Crossref]
  • [38] J. Zupan and J. Gasteiger: Neural Networks in Chemistry and Drug Design, WCH, Weinhaim, 1999.
  • [39] D. Nguyen and B. Widrow: “Inproving the learning speed of 2-layer neural network by choosing initial values of the aspative weights”, IEEE Proc. 1st Int. Joint. Conf. Neural Networks, Vol. 3, (1990), pp. 21–26.
  • [40] J.J. Moré: “The Levenberg-Marquardt Algorithm: Implementation and Theory”, In: G.A. Watson (Ed.): Numerical Analysis, Lecture Notes in Mathematics 630, Springer Verlag, 1977, pp. 105–116.
  • [41] MATLAB 6.0, Mathworks, 1984–2000.
  • [42] I. Kuzmanovski, M. Trpkovska, B. Šoptrajanov and V. Stefov: “Détermination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural nentworks”, Anal. Chim. Acta, Vol. 491, (2003), pp. 211–218.[Crossref]
  • [43] I. Kuzmanovski, M. Ristova, B. Šoptrajanov, V. Stefov and V. Popovski: “Determination of the composition of sialoliths composed of carbonate apatite and albumin using artificial neural networks”, Talanta, Vol. 62, (2004), pp. 813–817.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.