Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 3 | 291-304

Article title

On the inverse miniemulsion copolymerization and terpolymerization of acrylamide, N, N′-methylenebis(acrylamide) and methacrylic acid

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The kinetics of free-radical copolymerization and terpolymerization of acrylamide (AAm), N, N′-methylenebis(acrylamide) (MBA) and methacrylic acid (MA) in the inverse water/monomer/cyclohexane/Tween 85 miniemulsion was investigated. Polymerizable sterically-stable miniemulsions were formulated in cyclohexane as a continuous medium. Polymerizations are very fast and reach the final conversion within several minutes. The dependence of the polymerization rate vs. conversion is described by a curve with two nonstationary rate intervals. The maximum rate of polymerization slightly increases with increasing concentration of crosslinking monomer (MBA) and strongly decreases by the addition of MA. The rate of polymerization is inversely proportional to the 0.9th and 1.8th power of the particle concentration without and with MA, respectively. The number of polymer particles is inversely proportional to the 0.18th and 0.13th power of MBA concentration. The kinetic and colloidal parameters of the miniemulsion polymerization are discussed in terms of microemulsion polymerization model.

Publisher

Journal

Year

Volume

1

Issue

3

Pages

291-304

Physical description

Dates

published
1 - 9 - 2003
online
1 - 9 - 2003

Contributors

author
  • Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 842 36, Bratislava

References

  • [1] I. Capek and C.S. Chern: “Radical polymerization in direct miniemulsions systems”, Adv. Polym. Sci., Vol. 155, (2001), pp. 101–165. http://dx.doi.org/10.1007/3-540-44473-4_2[Crossref]
  • [2] W.V. Smith and R.H. Ewart: “Kinetics of emulsion polymerization”, J. Chem. Phys., Vol. 16, (1948), pp. 592–599. http://dx.doi.org/10.1063/1.1746951[Crossref]
  • [3] R.M. Fitch and C.H. Tsai: “Homogeneous particle nucleation”, J. Polym. Sci., Polym. Lett. Ed., Vol. 8, (1970), pp. 703–725. [Crossref]
  • [4] J. Barton: “Free-radical polymerization in inverse microemulsions”, Prog. Polym. Sci., Vol. 21, (1996), pp. 399–438. http://dx.doi.org/10.1016/0079-6700(95)00021-6[Crossref]
  • [5] K. Landfester, M. Willert, M. Antonietti: “Preparation of polymer particles in nonaqueous direct and inverse miniemulsions”, Macromolecules, Vol. 33, (2000), pp. 2370–2376. http://dx.doi.org/10.1021/ma991782n[Crossref]
  • [6] I. Capek and W. Funke: “A kinetic study of the emulsion copolymerization of N, N′-methylenebis(acrylamide) and an unsaturated polyester”, Makromol. Chem., Vol. 192, (1991), pp. 2031–2040. http://dx.doi.org/10.1002/macp.1991.021920912[Crossref]
  • [7] I. Capek: “The effect of comonomer composition on the emulsion copolymerization of N, N′-methylenebis(acrylamide) and an unsaturated polyester”, Makromol. Chem. Vol. 193, (1992), pp. 1795–1804. http://dx.doi.org/10.1002/macp.1992.021930801[Crossref]
  • [8] C.M. Miller, E.D. Sudol, C.A. Silebi, M.S. El-Assser: “Polymerization of miniemulsion prepared from polystyrene in styrene solution. 1. Benchmarks and limits”, Macromolecules, Vol. 28, (1995), pp. 2754–2764. http://dx.doi.org/10.1021/ma00112a022[Crossref]
  • [9] K. Fontenot and F.J. Schork: “Batch polymerization of methyl methacrylate in mini/macroemulsions”, J. Appl. Polym. Sci., Vol. 49, (1993), pp. 633–655. http://dx.doi.org/10.1002/app.1993.070490410[Crossref]
  • [10] J. Dionisio, H.K. Mahabadi, K.F. O’Driscoll: “High-conversion polymerization. IV. A definition of the onset of the gel effect”, J. Polym. Sci., Polym. Chem. Ed., Vol. 17, (1979), pp. 1891–1900. http://dx.doi.org/10.1002/pol.1979.170170701[Crossref]
  • [11] P. Potisk and I. Capek: “Microemulsion polymerization of butyl acrylate. 1. Effect of initiator type and concentration”, Angew. Makromol. Chem., Vol. 222, (1994), pp. 125–146. http://dx.doi.org/10.1002/apmc.1994.052220110[Crossref]
  • [12] I. Capek and P. Potisk: “Microemulsion and emulsion polymerization of butyl acrylate. I. Effect of the initiator type and temperature”, Eur. Polym. J., Vol. 31, (1995), pp. 1269–1277. http://dx.doi.org/10.1016/0014-3057(95)00086-0[Crossref]
  • [13] F. Candau, Y.S. Leong, R.M. Fitch: “Kinetic study of the polymerization of acrylamide in inverse microemulsion”, J. Polym. Sci., Polym. Chem. Ed., Vol. 23, (1985), pp. 193–214. http://dx.doi.org/10.1002/pol.1985.170230120[Crossref]
  • [14] F.M. Billmayer: Textbook of polymer science, 2nd ed., Wiley, New York, 1971.
  • [15] J. Barton, S. Kawamoto, K. Fujimoto, H. Kawaguchi, I. Capek: “Preparation of partly hydrophobized, crosslinked polyacrylamide particles by terpolymerization of acrylamide/N, N-methylenebisacrylamide/styrene in inverse microemulsion”, Polym. Int., Vol. 49, (2000), pp. 358–366. http://dx.doi.org/10.1002/(SICI)1097-0126(200004)49:4<358::AID-PI376>3.0.CO;2-1[Crossref]
  • [16] W. Olbrecht, U. Seitz, W. Funke: “Emulsion polymerization of multifunctional monomers”, Makromol. Chem., Vol. 177, (1976), pp. 1877–1885. http://dx.doi.org/10.1002/macp.1976.021770618[Crossref]
  • [17] I. Capek, J. Kostrubova, J. Barton: “Effect of a bi-unsaturated monomer on the emulsion polymerization of ethyl acrylate”, Makromol. Chem. Symposia, Vol. 31, (1990), pp. 213–226.
  • [18] A. Matsumoto, K. Kodama, H. Aota, I. Capek: “Kinetics of emulsion crosslinking polymerization and copolymerization of allyl methacrylate”, Eur. Polym. J., Vol. 35, (1999), pp. 1509–1517. http://dx.doi.org/10.1016/S0014-3057(98)00216-X[Crossref]
  • [19] A. Matsumoto, N. Murakami, H. Aota, J. Ikeda, I. Capek: “Emulsion polymerization of lauryl methacrylate and its copolymerization with trimethylolpropane trimethacrylate”, Polymer, Vol. 40, (1999), pp. 5687–5690. http://dx.doi.org/10.1016/S0032-3861(98)00789-7[Crossref]
  • [20] F.D. Kuchta, A.M. van Herk, A.L. German: “Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed-laser polymerization”, Macromolecules, Vol. 33, (2000), pp. 3641–3649. http://dx.doi.org/10.1021/ma990906t[Crossref]
  • [21] T. Matsumoto: Emulsions and Emulsion Technology, In: K.J. Lissant (Ed.), Dekker, New York, 1974, chapter 9.
  • [22] D.C. MacWilliams: “Acrylamide and other α, β unsaturated amides”, In: R.H. Yocum and E.B. Nuquist (Eds.): Functional Polymers, Their preparation, Polymerization, and Application, Vol. 1, Marcel Dekker, New York, 1993, p. 12.
  • [23] S. Egusa and K. Makuuchi: “Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers”, J. Polym. Sci. Pol. Chem., Vol. 20, (1982), pp. 863–874. [Crossref]
  • [24] I.M. Kolthoff and I.K. Miller: “The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in Aqueous medium”, J. Am. Chem. Soc., Vol. 73, (1951), pp. 3055–3059. http://dx.doi.org/10.1021/ja01151a024[Crossref]
  • [25] I. Capek: “Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation”, Adv. Colloid Interfac., Vol. 99, (2002), pp. 77–162. http://dx.doi.org/10.1016/S0001-8686(02)00005-2[Crossref]
  • [26] W. Ostwald: Phys. Chem., Vol. 37, (1901), pp. 385.
  • [27] I. Capek: “Radical polymerization of polar unsaturated monomers in direct microemulsion systems”, Adv. Colloid Interfac., Vol. 80, (1999), pp. 85–149. http://dx.doi.org/10.1016/S0001-8686(98)00059-1[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02476230
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.