Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 3 | 434-445

Article title

Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana willd. water fern


Title variants

Languages of publication



This study concerns the removal of the 137Cs+ and 60Co2+ β+γ-radioactive ions in Azolla caroliniana Willd. water fern. The living fern and two different types of biosorbent prepared from Azolla caroliniana were tested to remove the above-mentioned radioactive ions from dilute solutions, in the absence and in the presence of the ionic competition. Effective 137Cs+ and 60Co2+ ions removal from low radioactive wastewaters was demonstrated. The time dependent K
d(t) values were calculated from the absorption data. These results indicate that removal process achieved equilibrium in about 120 min and that it involves two steps: rapid and slow absorption; the active process (metabolic bioaccumulation on the living fern) was responsible for above one half of the total removal process. A thin layer radiochromatography study leads to the conclusion that the biochemical components in which 137Cs+ and 60Co2+ place themselves are of a polysaccharide and lipoid fractions.










Physical description


1 - 9 - 2004
1 - 9 - 2004


  • Faculty of Chemistry, “Al.I. Cuza” University, 11-Carol I Bd., 700506, Ia§i, Romania
  • Faculty of Chemistry, “Al.I. Cuza” University, 11-Carol I Bd., 700506, Ia§i, Romania
  • Faculty of Chemistry, “Al.I. Cuza” University, 11-Carol I Bd., 700506, Ia§i, Romania
  • Faculty of Biology, University of Bacau, 157-Calea Mârâ§e§ti, 600115, Bacâu, Romania
  • Faculty of Material Science and Engineering, “Transilvania” University, 50-Iuliu Maniu Str., 50091, Bra§ov, Romania


  • [1] K.H. Lieser: “Radionuclides in the geosphere: Sources, mobility, reaction in natural waters and interaction with solids”, Radiochim. Acta, Vol. 70/71, (1990), pp. 355–375.
  • [2] E.V. Kvasnikova, E.D. Stukin, V.N. Golosov, N.N. Ivanova and A.V. Panin: “Caesium-137 behaviour in small agricultural catchments on the area of the Chernobyl contamination”, Czech. J. Phys., Vol. 49, No. 1, (1999), pp. 181–187.
  • [3] B.C. Wolverton: NASA Technical Memorandum TM-X-72721/1975.
  • [4] A. Cecal, I. Palamaru, K. Popa, I. Caraus, V. Rudic and A. Gulea: “Accumulation of 60Co2+ and UO22 ions on hydrophytae plants” Isotopes Environm. Health Stud., Vol. 35, (1999), pp. 213–219.
  • [5] A. Cecal K. Popa, I. Caraus and I.I. Craciun: “Uranium and thorium uptake on the hydrophilic plants”, In: B.J. Merkel, B. Planer-Friederich and C. Wolkersdorfer (Eds.), Uranium in the Aquatic Environment, Springer Verlag, Heidelberg, 2002, pp. 479–488.
  • [6] A. Cecal, K. Popa, I. Caraus and V. Potoroaca: “65Zn2+ removal on hydrophytic plant”, Isotopes Environm. Health Stud., Vol. 38, (2002), pp. 33–37. http://dx.doi.org/10.1080/10256010212977[Crossref]
  • [7] P.G. Bergamini, G. Palmas, F. Piantelli, M. Sani, P. Banditelli, M. Previtera and F. Sodi: “Study of 137Cs absorption by Lemna minor”, Health Phys., Vol. 37, (1979), pp. 315–321. http://dx.doi.org/10.1097/00004032-197909000-00006[Crossref]
  • [8] T.G. Hinton, C.M. Bell, F.W. Whicker and T. Philippi: “Temporal changes and factors influencing 137Cs concentration in vegetal colonizing an exposed lake bed over a three-year period”, J. Environm. Rad., Vol. 44, No. 1, (1999), pp. 1–19. http://dx.doi.org/10.1016/S0265-931X(98)00074-5[Crossref]
  • [9] D.H. Oughton, P. Børretzen, B. Salbu and E. Tronstad: “Mobilization of 137Cs and 90Sr from sediments: potential source to arctic waters”, Sci. Tot. Environm., Vol. 202, No. 1–3, (1997), pp. 155–165. http://dx.doi.org/10.1016/S0048-9697(97)00112-5[Crossref]
  • [10] P. Ciffroy, J.M. Garnier and M.K. Pham: “Kinetics of the adsorption and desorption of radionuclides of Co, Mn, Cs, Fe, Ag and Cd in freshwater systems: experimental and modeling approaches”, J. Environm. Rad., Vol. 55, No. 1, (2001), pp. 71–91. http://dx.doi.org/10.1016/S0265-931X(01)00026-1[Crossref]
  • [11] G.M. Gadd: “Microbial interactions with metals/ radionuclide: the basis of bioremediation”, In: M.J. Keith-Roach and F.R. Livens (Eds.): Interactions of microorganisms with radionuclides, Elsevier, Amsterdam, 2002, pp. 179–204.
  • [12] B. Wolterbeek: “Biomonitoring of trace element air pollution: principles, possibilities and perspective”, Environ. Poll., Vol. 120, No. 1, (2002), pp. 11–21. http://dx.doi.org/10.1016/S0269-7491(02)00124-0[Crossref]
  • [13] E.C.S. Little: “Handbook of utilization of aquatic plants. A review of world literature”, FAO Fisheries Technical Paper, No. 187, FIRI/T187, Rome, (1979), pp. 176–188.
  • [14] D.R. Hoagland: “Optimum nutrient solution for plants”, Science, Vol. 52, (1969), pp. 562–564.
  • [15] J. Yang and B. Volesky: “Biosorption of uranium by Sargassum biomass”, Water Res., Vol. 33, (1999), pp. 3357–3363. http://dx.doi.org/10.1016/S0043-1354(99)00043-3[Crossref]
  • [16] A. Cecal, K. Popa, V. Potoroaca and N. Puica-Melniciuc: “Decontamination of radioactive liquid wastes by hydrophilic vegetal organisms”, J. Radioanal. Nucl. Chem., Vol. 251, (2002), pp. 257–561. http://dx.doi.org/10.1023/A:1014864226648[Crossref]
  • [17] F. Veglio’ and F. Beolchini: “Removal of metals by biosorption: a review”, Hydrometallurgy, Vol. 44, (1997), pp. 301–316. http://dx.doi.org/10.1016/S0304-386X(96)00059-X[Crossref]
  • [18] T.A. Davis, B. Volesky and A. Mucci: “A review of the biochemistry of heavy metal biosorption by brown algae”, Water Res., Vol. 37, (2003), pp. 4311–4330. http://dx.doi.org/10.1016/S0043-1354(03)00293-8[Crossref]
  • [19] J. Magill: “Nuclides.net: an integrated environment for computations on radionuclides and their radiation”, Springer, Berlin, 2003.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.