PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2004 | 2 | 1 | 196-213
Article title

Evaluation of 13C NMR spectra of cyclopropenyl and cyclopropyl acetylenes by theoretical calculations

Content
Title variants
Languages of publication
EN
Abstracts
EN
A convenient methodology was developed for a very accurate calculation of 13C NMR chemical shifts of the title compounds. GIAO calculations with density functional methods (B3LYP, B3PW91, PBE1PBE) and 6-311+G(2d,p) basis set predict experimental chemical shifts of 3-ethynylcyclopropene (1), 1-ethynylcyclopropane (2) and 1,1-diethynylcyclopropane (3) with high accuracy of 1–2 ppm. The present article describes in detail the effect of geometry choice, density functional method, basis set and effect of solvent on the accuracy of GIAO calculations of 13C NMR chemical shifts. In addition, the particular dependencies of 13C chemical shifts on the geometry of cyclopropane ring were investigated.
Publisher
Journal
Year
Volume
2
Issue
1
Pages
196-213
Physical description
Dates
published
1 - 3 - 2004
online
1 - 3 - 2004
References
  • [1] H.-U. Reissig and R. Zimmer: “Donor-Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis”, Chem. Rev., Vol. 103, (2003), pp. 1151–1196. http://dx.doi.org/10.1021/cr010016n[Crossref]
  • [2] O.G. Kulinkovich: “The Chemistry of Cyclopropanols”, Chem. Rev., Vol. 103, (2003), pp. 2597–2632; http://dx.doi.org/10.1021/cr010012i[Crossref]
  • [3] Yu.V. Tomilov, I.V. Kostyuchenko and O.M. Nefedov: “Synthesis and properties of nitrogeneous heterocycles containing a spiro-fused cyclopropane fragment”, Rus. Chem. Rev., Vol. 69, (2000), pp. 461–480; http://dx.doi.org/10.1070/RC2000v069n06ABEH000571[Crossref]
  • [4] A. de Meijere and S.I. Kozhushkov: “Macrocyclic Structurally Homoconjugated Oligoacetylenes: Acetylene- and Diacetylene-Expanded Cycloalkanes and Rotanes”, Top. Curr. Chem., Vol. 201, (1999), pp. 1–42;
  • [5] H.N.C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C. Yip, J. Tanko and T. Hudlicky: “Use of cyclopropanes and their derivatives in organic synthesis”, Chem. Rev., Vol. 89, (1989), pp. 165–198; http://dx.doi.org/10.1021/cr00091a005[Crossref]
  • [6] A. de Meijere: “The Bonding Properties of Cyclopropane and Their Chemical Consequences”, Angew. Chem. Int. Ed. Engl., Vol. 18, (1979), pp. 809–826. http://dx.doi.org/10.1002/anie.197908093[Crossref]
  • [7] R. Boese: “Structural Studies of Strained Molecules”, In: B. Halton (Ed.): Advances in Strain in Organic Chemistry, JAI Press, London, 1992, Vol. 2, pp. 191–254;
  • [8] A.I. Ioffe, V.A. Svyatkin and O.M. Nefedov: Structure of the Derivatives of Cyclopropane, Nauka, Moscow, 1986.
  • [9] U.M. Dzhemilev, R.I. Khusnutdinov, N.A. Shchadneva, O.M. Nefedov and G.A. Tolstikov: “Some new transformations of cyclopropylacetylene catalyzed by rhodium, palladium and cobalt complexes”, Izv. Akad. Nauk USSR, Ser. Khim., Vol. 10, (1989), pp. 2360–2362.
  • [10] M.M. Haley, B. Biggs, W.A. Looney and R.D. Gilbertson: “Synthesis of Alkenyl-and Alkynylcyclopropenes”, Tetrahedron Lett., Vol. 36, (1995), pp. 3457–3460. http://dx.doi.org/10.1016/0040-4039(95)00634-O[Crossref]
  • [11] M.S. Baird: “Thermally Induced Cyclopropene-Carbene Rearrangements: An Overview”, Chem. Rev., Vol. 103, (2003), pp. 1271–1294; http://dx.doi.org/10.1021/cr010021r[Crossref]
  • [12] V.R. Kartashov, E.V. Skorobogatova and N.S. Zefirov: “The Reactions Of Cyclopropene Compounds With Electrophilic Reagents”, Rus. Chem. Rev., Vol. 62, (1993), pp. 939–953; http://dx.doi.org/10.1070/RC1993v062n10ABEH000055[Crossref]
  • [13] M.S. Baird: “Functionalised Cyclopropenes as Synthetic Intermediates”, Top. Curr. Chem., Vol. 144, (1988), pp. 137–154. http://dx.doi.org/10.1007/BFb0111230[Crossref]
  • [14] R.D. Gilbertson, T.J.R. Weakley and M.M. Haley: “Preparation, X-ray Crystal Structures, and Reactivity of Alkynylcyclopropenylium Salts”, J. Org. Chem., Vol. 65, (2000), pp. 1422–1430. http://dx.doi.org/10.1021/jo9915372[Crossref]
  • [15] R. Boese, D. Blaeser, W.E. Billups, M.M. Haley, W. Luo and B.E. Arney: “X-ray Crystal Structure of 3-Vinylcyclopropene. Gas Phase Synthesis of Simple Cyclopropenes”, J. Org. Chem., Vol. 59, (1994), pp. 8125–8126; http://dx.doi.org/10.1021/jo00105a032[Crossref]
  • [16] R. Boese, D. Blaeser, R. Gleiter, K.H. Pfeifer, W.E. Billups and M.M. Haley: “Structure and photoelectron spectrum of 3,3′-bicyclopropenyl”, J. Am. Chem. Soc., Vol. 115, (1993), pp. 743–746. http://dx.doi.org/10.1021/ja00055a052[Crossref]
  • [17] H.-O. Kalinowski, S. Berger and S. Braun: Carbon-13 NMR Spectroscopy, John Wiley and Sons, Chichester, 1988.
  • [18] K. Pihlaja and E. Kleinpeter (Eds.): Carbon-13 NMR Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers, Deerfield Beach, 1994.
  • [19] K.K. Baldridge, B. Biggs, D. Blaser, R. Boese, R.D. Gilbertson, M.M. Haley, A.H. Maulitz and J.S. Siegel: “X-Ray crystal and ab initio structure of 3-ethynylcyclopropene: a curiously short carbon-carbon double bond”, Chem. Commun., (1998), pp. 1137–1138. [Crossref]
  • [20] S.S. Weselowski, J.M. Gonzales, P. von R. Schleyer and H.F. Schaefer: “3-Ethynylcyclopronene: a highly suspicious crystal structure”, Chem. Commun., (1999), pp. 439–440.
  • [21] J.D. Dunitz: “A curiously short carbon-carbon double bond?”, Chem. Commun., (1999), pp. 2547–2547. [Crossref]
  • [22] A.D. Becke: “Density-functional exchange-energy approximation with correct asymptotic behaviour”, Phys. Rev. A, Vol. 38, (1988), pp. 3098–3100. http://dx.doi.org/10.1103/PhysRevA.38.3098[Crossref]
  • [23] C. Lee, W. Yang and R.G. Parr: “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, Vol. 37, (1988), pp. 785–789. http://dx.doi.org/10.1103/PhysRevB.37.785[Crossref]
  • [24] A.D. Becke: “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., Vol. 98, (1993), pp. 5648–5652. http://dx.doi.org/10.1063/1.464913[Crossref]
  • [25] R. Ditchfield, W.J. Hehre and J.A. Pople: “Self-consistent molecular-orbital methods: IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules”, J. Chem. Phys., Vol. 54, (1971), pp. 724–728. http://dx.doi.org/10.1063/1.1674902[Crossref]
  • [26] R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople: “Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys., Vol. 72, (1980), pp. 650–654. http://dx.doi.org/10.1063/1.438955[Crossref]
  • [27] R.A. Kendall, T.H. Jr. Dunning and R.J. Harrison: “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions”, J. Chem. Phys., Vol. 96, (1992), pp. 6796–6806. http://dx.doi.org/10.1063/1.462569[Crossref]
  • [28] A. de Meijere, S.I. Kozhushkov, R. Boese, T. Haumann, D.S. Yufit, J.A.K. Howard, L.S. Khaikin and M. Tratteberg. “Structural Parameters and Electronic Interaction in Substituted 1,1-Diethynylcyclopropanes-An Experimental Study”, Eur. J. Org. Chem., (2003), pp. 485–492.
  • [29] T. Haumann, R. Boese, S.I. Kozhushkov, L. Rauch and A. de Meijere: “Structural Aspects of Cyclopropyl Conjugation: Experimental Studies and Ab Initio Calculations”, Liebigs Ann./Recueil, (1997), pp. 2047–2053. [Crossref]
  • [30] M.D. Harmony, R.N. Nandi, J.V. Tietz, J.-I. Choe, S.J. Getty and S.W. Staley: “Microwave structures of cyanocyclopropane and cyclopropylacetylene. Effects of cyclopropyl π conjugation on structure”, J. Am. Chem. Soc., Vol. 105, (1983), pp. 3947–3951. http://dx.doi.org/10.1021/ja00350a034[Crossref]
  • [31] K. Wolinski, J.F. Hilton and P. Pulay: “Efficient implementation of the gaugeindependent atomic orbital method for NMR chemical shift calculations”, J. Am. Chem. Soc., Vol. 112, (1990), pp. 8251–8260. http://dx.doi.org/10.1021/ja00179a005[Crossref]
  • [32] R. Ditchfield: “Self-consistent perturbation theory of diamagnetism. I. A. gauge-invariant LCAO method for NMR chemical shifts”, Mol. Phys., Vol. 27, (1974), pp. 789–807. http://dx.doi.org/10.1080/00268977400100711[Crossref]
  • [33] T. Helgaker, M. Jaszunski and K. Ruud: “Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constans”, Chem. Rev., Vol. 99, (1999), pp. 293–352. http://dx.doi.org/10.1021/cr960017t[Crossref]
  • [34] J.R. Cheeseman, G.W. Trucks, T.A. Keith and M.J. Frisch: “A comparison of models for calculating nuclear magnetic resonance shielding tensors”, J. Chem. Phys., Vol. 104, (1996), pp. 5497–5509. http://dx.doi.org/10.1063/1.471789[Crossref]
  • [35] G. Rauhut, S. Puyear, K. Wolinski and P. Pulay: “Comparison of NMR Shieldings Calculated from Hartree-Fock and Density Functional Wave Functions Using Gauge-Including Atomic Orbitals”, J. Phys. Chem., Vol. 100, (1996), pp. 6310–6316. http://dx.doi.org/10.1021/jp9529127[Crossref]
  • [36] J.P. Perdew, K. Burke and Y. Wang: “Generlized gradient approximation for the exchange-correlation hole of a many-electron system”, Phys. Rev. B, Vol. 54, (1996), pp. 16533–16539. http://dx.doi.org/10.1103/PhysRevB.54.16533[Crossref]
  • [37] J.P. Perdew, K. Burke and M. Ernzerhof: “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 77, (1996), pp. 3865–3868. http://dx.doi.org/10.1103/PhysRevLett.77.3865[Crossref]
  • [38] J.P. Perdew, K. Burke and M. Ernzerhof: “Generalized gradient approximation made simple”, Phys. Rev. Lett., Vol. 78, (1997), pp. 1396–1396. http://dx.doi.org/10.1103/PhysRevLett.78.1396[Crossref]
  • [39] E.G. Corley, A.S. Thompson and M. Huntington: “Cyclopropylacetylene”, Organic Syntheses, Vol. 77, (2000), pp. 231–233.
  • [40] N.S. Zefirov, S.I. Kozhushkov, T.S. Kuznetsova, R. Gleiter and M. Eckert-Maksic: “The synthesis of disubstituted ethylene and acetylene derivatives of cyclopropanes based on 1,1-diacetylcyclopronane”, Zh. Org. Khim., Vol. 22, (1986), pp. 110–121. (In Russian); J. Org. Chem. USSR, Vol. 22, (1986), pp. 95–106, (In English).
  • [41] J.B. Foresman and A.E. Frisch: Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1996.
  • [42] M. Cossi, V. Barone, R. Cammi and J. Tomasi: “Ab initio study of solvated molecules: a new implementation of the polarizable continuum model”, Chem. Phys. Lett., Vol. 255, (1996), pp. 327–335. http://dx.doi.org/10.1016/0009-2614(96)00349-1[Crossref]
  • [43] A. Fortunelli and J. Tonmasi: “The Implementation of Density Functional Theory Within the Polarizable Continuum Model for Solvation”, Chem. Phys. Lett., Vol. 231, (1994), pp. 34–39. http://dx.doi.org/10.1016/0009-2614(94)01253-9[Crossref]
  • [44] J. Tomasi and M. Persico: “Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent”, Chem. Rev., Vol. 94, (1994), pp. 2027–2094. http://dx.doi.org/10.1021/cr00031a013[Crossref]
  • [45] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A.Jr., Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle and J.A. Pople: “Gaussian 98”, In: Gaussian 98, Pittsburgh, PA, 1998.
  • [46] G. Schaftenaar and J.H. Noordik: “Molden: a pre- and post-processing program for molecular and electronic structures”, J. Comput.-Aided Mol. Des., Vol. 14, (2000), pp. 123–134. http://dx.doi.org/10.1023/A:1008193805436[Crossref]
  • [47] J.C. Facelli and A.C. de Dios (Eds.): Modelling NMR Chemical Shifts, ACS Symposium series 732, ACS, Washington, 1999.
  • [48] W. Koch and M.C. Holthausen: A Chemist’s Guide to Density Functional Theory, Wiley-VCH, New York, 2000.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02476190
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.