Preferences help
enabled [disable] Abstract
Number of results
2005 | 3 | 2 | 326-346
Article title

Oxidation of some catecholamines by sodium N-chloro-p-toluenesulfonamide in acid medium: A kinetic and mechanistic approach

Title variants
Languages of publication
The kinetics of the oxidation of five catecholamines viz., dopamine (A), L-dopa (B), methyldopa (C), epinephrine (D) and norepinephrine (E) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) in presence of HClO4 was studied at 30±0.1 °C. The five reactions followed identical kinetics with a first-order dependence on [CAT]o, fractional-order in [substrate]o, and inverse fractional-order in [H+]. Under comparable experimental conditions, the rate of oxidation of catecholamines increases in the order D>E>A>B>C. The variation of ionic strength of the medium and the addition of p-toluenesulfonamide or halide ions had no significant effect on the reaction rate. The rate increased with decreasing dielectric constant of the medium. The solvent isotope effect was studied using D2O. A Michaelis-Menten type mechanism has been suggested to explain the results. Equilibrium and decomposition constants for CAT-catecholamine complexes have been evaluated. CH3C6H4SO2NHCl of the oxidant has been postulated as the reactive oxidizing species and oxidation products were identified. An isokinetic relationship is observed with β=361 K, indicating that enthalpy factors control the reaction rate. The mechanism proposed and the derived rate law are consistent with the observed kinetics.
Physical description
1 - 6 - 2005
1 - 6 - 2005
  • [1] G. Zubay: Biochemistry, 4th Ed., WCB, Boston, 1998.
  • [2] J.G. Cory and T.M. Devlin: Text book of biochemistry with clinical correlations, 4th Ed., John Wiley and Sons, New York, 1997.
  • [3] A.L. Lehninger, D.L. Nelson and M.M. Cox: Principles of biochemistry, 2nd Ed., CBS Publishers, New Delhi, 1993.
  • [4] C.M. Lozano, T.P. Ruiz, V. Thomas and O. Val: “Determination of epinephrine, norepinephrine, dopamine and L-dopa in pharmaceutical by a photkinetic method”, Analyst, Vol. 116, (1991), p. 857.[Crossref]
  • [5] E. Pelizzetti, E. Mentasti and E. Pramauro: “Kinetics and mechanism of oxidation pathways of some catecholamines with periodic acid”, J. Chem. Soc., Perkin Trans. 2, (1976), p. 1651. [Crossref]
  • [6] B.S. Sherigara, E.V.S. Subrahmanyam, K. Ishwar Bhat and B.E. Kumaraswamy: “Oxidation of 3-(3,4-dihydroxy phenyl)-L-alanine (L-dopa) and 3-(3,4-dihydroxyphenyl)-2-methyl-L-alanine (methyldopa) by manganese (III) in pyrophosphate media: kinetic and mechanistic study”, Int. J. Chem. Kinet., Vol. 33(8), (2001), p. 449.[Crossref]
  • [7] M.M. Campbell and G. Johnson: “Chloramine-T and related N-halogeno-N-metallo reagents”, Chem. Rev., Vol. 78, (1978), p. 65.[Crossref]
  • [8] K.K. Banerji, B. Jayaram and D.S. Mahadevappa: “Mechanistic aspects of oxidation by N-metallo-N-haloarylsulfonamides”, J. Sci. Ind. Res., Vol. 46, (1987), p. 65.
  • [9] Puttaswamy, D.S. Mahadavappa and K.S. Rangappa: “Oxidation of indigo carmine by N-haloarenesulfonamides: a kinetic study”, Bull. Chem. Soc. Jpn., Vol. 62, (1989), p. 3343.[Crossref]
  • [10] U. Umeshkumar, K.C. Rajanna and P.K. Saiprakash: “A kinetic study of chloramine-T reaction with acetanilides in micellar media”, Pro. Nat. Acad. Sci. India, Vol. 65A, (1995), p. 279.
  • [11] Puttaswamy, T.M. Anuradha, R. Ramachandrappa and N.M.M. Gowda: “Oxidation of isoniazide by N-haloarenesulfonamides in alkaline medium: A kinetic and mechanistic study”, Int. J. Chem. Kinet., Vol. 32(4), (2000), p. 221.<221::AID-KIN4>3.0.CO;2-1[Crossref]
  • [12] R.J.D. Saldanha, S. Ananda, B.M. Venkatesha and N.M.M. Gowda: “Oxidation of psychotropic drugs by chloaramine-T in acid medium: a kinetic study using spectrophotometry”, J. Mole. Str., Vol. 606, (2002), p. 147.[Crossref]
  • [13] Puttaswamy, T.M. Anuradha and K.L. Mahadevappa: “Kinetic analysis of oxidation of dopamine by sodium N-chlorobenzenesulfonamide in perchloric acid medium: a mechanistic approach”, Indian J. Chem., Vol. 40A, (2001), p. 514.
  • [14] Puttaswamy and R. Ramachandrappa: “Kinetics of dopamine oxidation by sodium N-bromo-p-toluenesulfonamide in acid medium: a mechanistic approach”, Oxid. Commun., Vol. 25 (1), (2002), p. 102.
  • [15] Puttaswamy and Nirmala Vaz: “Kinetics and mechanism of ruthenium (III) and osmium (VIII) catalyzed oxidation of dopamine with bromamine-B in acid and alkaline media”, Stud. Surf.Sci. Cat., Vol. 133, (2001), p. 535.[Crossref]
  • [16] J.C. Morris, J.R. Salazar and M.A. Winemann: “Equilibrium studies on chloro compounds: the ionization constant of N-chloro-p-toluenesulfonamide”, J. Am. Chem. Soc., Vol. 70, (1948), p. 2036.[Crossref]
  • [17] G. Akerloff: “Dielectric constants of some organic solvents-water mixture at various temperatures”, J. Am. Chem. Soc., Vol. 54, (1932), p. 4125.[Crossref]
  • [18] F. Feigl: Spot tests in organic analysis, 7th Ed., Elsevier, Amsterdam, 1966, pp. 332–335, 206.
  • [19] A.I. Vogel: Text book of practical organic chemistry, 5th Ed., ELBS and Longman, London, 1966, p. 1257.
  • [20] T.E. Young and B.W. Babbitt: “Electrochemical study of the oxidation of α-methyldopamine, α-methylnoradranaline and dopamine”, J. Org. Chem., Vol. 48, (1983) p. 562.[Crossref]
  • [21] E. Bishop and V.J. Jennings: “Titrimetric analysis with chloramine-T: The status of chloramine-T as a titrimetric reagent”, Talanta, Vol. 1, (1958), p. 197.[Crossref]
  • [22] F.F. Hardy and J.P. Johnston: “The interactions of N-bromo-N-sodiobenzesulfonamide (bromamine-B) with p-nitrophenoxide ion”, J. Chem. Soc., Perkin Trans.2, (1973), p. 742. [Crossref]
  • [23] F.G. Soper: “The hydrolysis of the p-toluenesulfonchloroamides in water”, J. Chem. Soc. Trans., Vol. 125, (1924), p. 1899; (b) D.R. Pryde and F.G. Soper: “The interaction of anilides and hypochlorous acid”, J. Chem. Soc., (1931), p. 1510; (c) D.R. Pryde and F.G Soper: “The direct interchange of chlorine in the interaction of p-toluenesulfonamide and N-chloroactanilide”, J. Chem. Soc., (1931), p. 1514; (d) F.G. Soper and F.G. Smith: “The haloagenation of phenols”, J. Chem. Soc., (1926), p. 1582.[Crossref]
  • [24] S.S. Narayanan and V.R.S. Rao: “Chlorine isotopic exchange reaction between chloramine-T and chloride ion”, Radio. Chim. Acta, Vol. 32, (1983), p. 211.
  • [25] M. Subhashini, M. Subramanian and V.R.S. Rao: “Determination of the protonated constant of chloramine-B”, Talanta, Vol. 32, (1985), p. 1082.[Crossref]
  • [26] J.E. House: Principles of chemical kinetics, Wm. C. Brown Publishers, Boston, 1997.
  • [27] E.A. Moelwyn-Hughes: The kinetics of reaction in solutions, Clarendon Press, Oxford, 1947; Physical chemistry, 2nd Ed., Pergamon, New York, 1961.
  • [28] S.W. Benson: The foundations of chemical kinetics, McGraw-Hill, New York, 1960.
  • [29] A.A. Frost and R.G. Pearson: Kinetics and mechanism, 2nd Ed., Wiley, New York, 1961.
  • [30] K.J. Laidler: Reaction kinetics, Pergamon, New York, 1963.
  • [31] E.S. Amis: Solvent effects on reaction rates and mechanisms, Academic, New York, 1966.
  • [32] S.G. Entelis and R.P. Tiger: Reaction kinetics in the liquid phase, Wiley, New York, 1966.
  • [33] C.J. Collins and N.S. Bowman: Isotope effects in chemical reactions, Van Nostrand Reinhold, New York, 1970, p. 267.
  • [34] K.B. Wiberg: Physical organic chemistry, Wiley, New York, 1964.
  • [35] O. Exner: “Entropy-enthalpy compensation and anticompensation: solvation and ligand binding”, Chem. Commun., (2000), p. 1655 and references therein.
  • [36] M. Anand Rao, B. Sethuram and Navaneeth Rao: “Oxidation studies: Ag(I)-catalysis in oxidation of amines of amines by Ce (IV) in nitric acid: A kinetic study”, J. Indian Chem. Soc., Vol. 59, (1982), p. 1040.
  • [37] Puttaswamy and D.S. Mahadevappa: “Oxidation of substituted ethanols by sodium-N-bromobenzenesulfonamide: A kinetic study”, J. Phys. Org. Chem., Vol. 2, (1989), p. 660.[Crossref]
  • [38] K.K. Senguptha, N. Bhattacharjee and B. Pal: “Kinetics and mechanism of the oxidation of neutralized α-hydroxy acids by tris(pyridine-2-carboxylato) manganese (III)”, Transition Metal. Chem., Vol. 24, (1999), p. 268.[Crossref]
  • [39] K.S. Rangappa, K. Manjunathaswamy, M.P. Raghavendra and N.M.M. Gowda: “Kinetics and mechanism of oxidation of neutral α-aminoacids by sodium N-chloro-p-toluenesulfonamide in acid medium”, Int. J. Chem.Kinet., Vol. 34, (2002), p. 49.[Crossref]
  • [40] Puttaswamy and Nirmala Vaz: “Kinetic analysis of oxidation of dipeptides by sodium N-bromobenzenesulfonamide in acid medium: a mechanistic approach”, Bull. Chem. Soc. Jpn., Vol. 76, (2003), p. 73.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.