Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 2 | 295-310

Article title

Novel Ni−Fe-oxide systems for catalytic oxidation of cyanide in an aqueous phase

Content

Title variants

Languages of publication

EN

Abstracts

EN
Catalytic activity of mixed Ni−Fe oxide systems with respect to air oxidation of aqueous cyanide solution at 308 K was investigated. The catalysts employed were prepared by an oxidation-precipitation method at room temperature and were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, and chemical analysis. The cyanide oxidation rate was found to be dependent on the catalyst's calcination temperature, pH of the medium, and catalyst loading. Results revealed that the catalyst calcined at 120°C is the most active where up to 90% of free cyanide (4 mM) was removed after oxidation for 30 minutes in the presence of 2.5 g/L catalyst at pH 9.5. The cyanide conversion becomes less favorable as the pH of the solution increases (with other constant parameters). The selectivity data showed that carbon dioxide is the main oxidation product, regardless of pH of the solution.

Publisher

Journal

Year

Volume

3

Issue

2

Pages

295-310

Physical description

Dates

published
1 - 6 - 2005
online
1 - 6 - 2005

Contributors

  • Department of Physical Chemistry, Paisii Hilendarski University of Poovdiv, 24 Tzar Assen Street, 4000, Plovdiv, Bulgaria
  • Department of Physical Chemistry, Paisii Hilendarski University of Poovdiv, 24 Tzar Assen Street, 4000, Plovdiv, Bulgaria

References

  • [1] D.W. Grosse: “Treatment technologies for hazardous wastes. 4. A review of alternative treatment processes for metal bearing hazardous-waste streams”, J. Air Pollut. Control Asoc., Vol. 36, (1986), pp. 603–614.
  • [2] S.Q. Hassan, M.P. Vitello, M.J. Kupferle and D.W. Grosse: “Treatment technology evaluation for aqueous metal and cyanide bearing hazardous wastes (F007),” J. Air Waste Manage. Assoc., Vol. 41, (1991), pp. 710–715.
  • [3] D.A. Kunz, R.F. Fernandez and P. Parab: “Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase”, Biochem. Bioph. Res. Co., Vol. 287, (2001), pp. 514–518. http://dx.doi.org/10.1006/bbrc.2001.5611[Crossref]
  • [4] C.S. Wang, D.A. Kunz and B.J. Venables: “Incorporation of molecular oxygen and water during enzymatic oxidation of cyanide by Pseudomonas fluorescens NCIMB 11764”, Appl. Environ. Microb., Vol. 6, (1996), pp. 2195–2197.
  • [5] M. Futakawa, H. Takahashi, G. Inoue et al.: “Treatment of concentrated cyanide waste-water”, Desal., Vol. 98, (1994), pp. 345–352. http://dx.doi.org/10.1016/0011-9164(94)00160-X[Crossref]
  • [6] N. Costarramone, A. Kneip and A. Castetbon: “Ferrate (VI) oxidation of cyanide in water”, Environ. Technol., Vol. 25, (2004), pp. 945–955. http://dx.doi.org/10.1080/09593330.2004.9619388[Crossref]
  • [7] C.S. Fugivara, P.T.A. Sumodjo, A.A. Cardoso et al.: “Electrochemical decomposition of cyanides on tin dioxide electrodes in alkaline media”, Analyst, Vol. 121, (1996), pp. 541–545. http://dx.doi.org/10.1039/an9962100541[Crossref]
  • [8] A. Stavart and A.V. Lierde: “Electrooxidation of cyanide on cobalt oxide anodes”, J. Appl. Electrochem., Vol. 31, (2001), pp. 469–474. http://dx.doi.org/10.1023/A:1017503330029[Crossref]
  • [9] M.R.V. Lanza and R. Bertazzoli: “Cyanide oxidation from wastewater in a flow electrochemical reactor”, Ind. & Eng. Chem. Res., Vol. 41, (2002), pp. 22–26. http://dx.doi.org/10.1021/ie010363n[Crossref]
  • [10] J. Lu, D.B. Dreisinger and W.C. Cooper: “Anodic oxidation of copper cyanide on graphite anodes in alkaline solution”, J. Appl. Electrochem., Vol. 32, (2002), pp. 1119–1129. http://dx.doi.org/10.1023/A:1021245618401[Crossref]
  • [11] K. Chiang, R. Amal and T. Tran: “Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide”, Adv. Environ. Res., Vol. 6, (2002), pp. 471–485. http://dx.doi.org/10.1016/S1093-0191(01)00074-0[Crossref]
  • [12] B. Dabrowski, A. Zaleska, M. Janczarek, J. Hupka and J. Miller: “Photo-oxidation of dissolved cyanide using TiO2 catalyst”, J. Photochem. Photobiol. A: Chem., Vol. 151, (2002), pp. 201–205. http://dx.doi.org/10.1016/S1010-6030(02)00151-X[Crossref]
  • [13] A. Bozzi, I. Guasaquillo and J. Kiwi: “Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts”, Appl. Catal. B: Environ., Vol. 51, (2004), pp. 203–211. http://dx.doi.org/10.1016/j.apcatb.2004.02.014[Crossref]
  • [14] V. Augugliaro, V. Loddo, G. Marci, L. Palmisano and M. Lopez-Munoz: “Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions”, J. Catal., Vol. 166, (1997), pp. 272–283. http://dx.doi.org/10.1006/jcat.1997.1496[Crossref]
  • [15] V. Augugliaro, J. Blanco Galvez, J. Caceres Vazquez, E. Garcia Lopez, V. Loddo, M. Lopez Munoz, S. Rodrigez, S. Malato Rodrigez, G. Marci, L. Palmisano, M. Schiavello and J. Soria Ruiz: “Photocatalytic oxidation of cyanide in aqueous TiO2 suspensions irradiated by sunlight in mild and strong oxidant conditions”, Catal. Today, Vol. 54, (1999), pp. 245–253. http://dx.doi.org/10.1016/S0920-5861(99)00186-8[Crossref]
  • [16] A. Alicilar, M. Komurcu and M. Guru: “The removal of cyanides from water by catalytic air oxidation in a fixed bed reactor”, Chem. Eng. and Processing, Vol. 41, (2002), pp. 525–529. http://dx.doi.org/10.1016/S0255-2701(01)00172-6[Crossref]
  • [17] B. Basu, S. Satapathy and A.K. Bhatnagar: “Merox and related metal phtalocyanine catalyzed oxidation processes”, Catal. Rev.-Sci. Eng., Vol. 35, (1993), pp. 571–609.
  • [18] L.P. Salomoson: Cyanide in Biology, B. Vennesland, E. Conn and F. Wissing (Eds.), Academic Press, New York, 1981.
  • [19] St. Christoskova, M. Stojanova and D. Mehandjiev: “Entgiftung cyanidischer abwasser von galvanisier-betrieben durch oxidation mit Co-oxidsystem”, Galvanotechnik, Vol. 87, (1996), pp. 4124–4130.
  • [20] St. Christoskova, M. Stojanova and M. Georgieva: “Low-temperature aqueous phase oxidation of cyanide ions with the participation of nickel oxide system”, React. Kinetics and Catal. Lett., Vol. 67, (1999), pp. 59–66. http://dx.doi.org/10.1007/BF02475828[Crossref]
  • [21] M. Stoyanova and St. Christoskova: “Aqueous phase catalytic oxidation of cyanides over iron-modified cobalt oxide system”, Appl. Catal. A: General, Vol. 274, (2004), pp. 133–138. http://dx.doi.org/10.1016/j.apcata.2004.06.002[Crossref]
  • [22] St. Christoskova, M. Stoyanova and M. Georgieva: “Low-temperature iron-modified cobalt oxide system. Part I: Preparation and characterisation”, Appl. Catal. A: General, Vol. 208 (2001), pp. 235–242. http://dx.doi.org/10.1016/S0926-860X(00)00709-2[Crossref]
  • [23] K. Nakagava, R. Konaka and T. Nakata: “Oxidation with nickel peroxide. I. Oxidation of alcohols”, J. Org. Chem., Vol. 27, (1962), pp. 1597–1601. [Crossref]
  • [24] S.B. Kanungo: “Physicochemical properties of MnO2−CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation”, J. Catal., Vol. 58, (1979), pp. 419–435. http://dx.doi.org/10.1016/0021-9517(79)90280-X[Crossref]
  • [25] M. Stoyanova, St. Christoskova and M. Georgieva: “Mixed Ni−Mn-oxide systems as catalysts for complete oxidation. Part I: Preparation and characterization”, Appl. Catal. A: General, Vol. 249, (2003), pp. 285–294. http://dx.doi.org/10.1016/S0926-860X(03)00228-X[Crossref]
  • [26] M. Guilloton and F. Karst: “A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid”, Anal. Biochem., Vol. 149, (1985), pp. 291–295. http://dx.doi.org/10.1016/0003-2697(85)90572-X[Crossref]
  • [27] JCPDS-International Centre for Diffraction Data, #22-0556.
  • [28] JCPDS-International Centre for Diffraction Data, #22-0444.
  • [29] JCPDS-International Centre for Diffraction Data, #47-1049.
  • [30] JCPDS-International Centre for Diffraction Data, #10-0325.
  • [31] C. Milone, R. Ingoglia, G. Neri, A. Pistone and S. Galvagno: “Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol”, Appl. Catal. A: General, Vol. 211, (2001), pp. 251–257. http://dx.doi.org/10.1016/S0926-860X(00)00875-9[Crossref]
  • [32] A. Pintar and J. Levec: “Catalytic oxidation of organics in aqueous solutions”, J. Catal., Vol. 135, (1992), pp. 345–357. http://dx.doi.org/10.1016/0021-9517(92)90038-J[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475998
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.