Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 4 | 655-668

Article title

Positron annihilation study for cadmium (electronic structure and enhancement effect)

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The three dimensional electron density in momentum space ρ(p) and in wave vector space n(k) was reconstructed for cadmium (Cd). The measurements were performed using the two dimensional angular correlation of annihilation radiation (2D-ACAR) technique. Enhanced contributions in the spectra were observed around 5.5 mrad, discussed in terms of a Kahana-like enhancement effect. From another viewpoint, Fermi radii were analyzed in the (λM K), (ALM) and (AHK) planes, and they showed a maximum deviation of about 4% from the free electron Fermi radius. Moreover, comparisons to a radio-frequency size effect (RFSE) experiment and theoretical band structure calculations (using augmented plane wave (APW), linear combination of atomic orbital (LCAO) and linear muffin tin orbital (LMTO) methods) were examined. The results showed a qualitative agreement with both APW and LCAO calculations. However, a favorable agreement with the APW method was determined via Fermi surface dimensions. The differences of bands' occupation of n(k) between the current work and the APW method were argued in view of positron wave function in Cd.

Publisher

Journal

Year

Volume

1

Issue

4

Pages

655-668

Physical description

Dates

published
1 - 12 - 2003
online
1 - 12 - 2003

Contributors

author
  • Department of Physics, Faculty of Science, Helwan University, 11795, Cairo, Egypt

References

  • [1] S. Daniuk, T. Jarlborg, G. Kontrym-Sznajd, J. Majsnerowski and H. Stachowiak: “Fermi surface of Mg and Cd”, J. Phys. Condens. Matter, Vol. 1, (1989), pp. 8397. http://dx.doi.org/10.1088/0953-8984/1/44/011[Crossref]
  • [2] W.A. Harrison: “Band structure and Fermi surface of Zinc”, Phys. Rev., Vol. 126, (1962), pp. 497. http://dx.doi.org/10.1103/PhysRev.126.497[Crossref]
  • [3] R.W. Stark and L.M. Falicov: “Band structure and Fermi surface of Zinc and cadmium”, Phys. Rev. Letter, Vol. 19, (1967), pp. 795. http://dx.doi.org/10.1103/PhysRevLett.19.795[Crossref]
  • [4] G. Kontrym-Sznajd and J. Majsnerowski: “Electron-positron pair momentum densities in Mg and Cd”, Sol. Stat. Communicat, Vol. 70, (1989), pp. 593. http://dx.doi.org/10.1016/0038-1098(89)90356-6[Crossref]
  • [5] P. Shinha and S. Chatterjee: “Energy band structure of zinc and cadmium”, J. Phys., Vol. F7, (1977), pp. 105. http://dx.doi.org/10.1088/0305-4608/7/1/020[Crossref]
  • [6] D.A. Papaconstantopoulos: “Handbook of the band structure of elemental solids”, Plenum Press, New York, 1986.
  • [7] G. Kontrym-Sznajd and J. Majsnerowski: “Electron-positron Pair Momentum densities in Mg and Cd”, Solid State Communicat., Vol. 70, (1989), pp. 593. http://dx.doi.org/10.1016/0038-1098(89)90356-6[Crossref]
  • [8] G. Kontrym-Sznajd and A. Rubaszek: “Interpretation of positron-annihilation data with respect to the electron-positron enhancement factors. II. Applications”, Phys. Rev. B, Vol. 47, (1993), pp. 6960. http://dx.doi.org/10.1103/PhysRevB.47.6960[Crossref]
  • [9] G. Kontrym-Sznajd and A. Rubaszek: “Interpretation of positron-annihilation data with respect to the electron-positron enhancement factors. I. Theory”, Phys. Rev. B, Vol. 47, (1993), pp. 6950. http://dx.doi.org/10.1103/PhysRevB.47.6950[Crossref]
  • [10] G. Kontrym-Sznajd, H. Sormann: “Electronic structure seen by positrons in extended and reduced zone scheme”, Acta Physica Polonica A, Vol. 88, (1995), pp. 17.
  • [11] R. Suzuki and M. Osawa, S. Tanigawa, M. Matsumoto and N. Shiotani: “Positron Study of Electron Momentum Density and Fermi surface in Titanium and Zirconium”, J. Phys. Soc. Jpn, Vol. 58, (1989), pp. 3251. http://dx.doi.org/10.1143/JPSJ.58.3251[Crossref]
  • [12] A. S. Abdul Hamid and S. Tanigawa: “Study on the electron-positron momentum density and Fermi surface in Hf using 2D-ACAR experiment”, Phys. Stat. Sol. (b), Vol. 215, (1999), pp. 1033. http://dx.doi.org/10.1002/(SICI)1521-3951(199910)215:2<1033::AID-PSSB1033>3.0.CO;2-D[Crossref]
  • [13] G. Kontrym-Sznajd: “Three-Dimensional Image Reconstruction with Application in Positron Annihilation”, Phys. Stat. Sol. (a), Vol. 117, (1990), pp. 227.
  • [14] J. Arponnen and C. Pajanne: “Angular correlation of positron annihilation”, J. Phys., Vol. F9, (1979), pp. 2359. http://dx.doi.org/10.1088/0305-4608/9/12/009[Crossref]
  • [15] H. Nakashima, T. Kubota, H. Kondo, Y. Murakami, S. Tanigawa: “Study on Momentum Density of Electrons and Fermi surface in Aluminum by Positron Annihilation”, PPhys. Stat. Sol (b), Vol. 170, (1992), pp. 171.
  • [16] D.G. Lock, V.H.C. Crisp, R.N. West: “Positron annihilation and Fermi surface studies: a new approach”, J. Phys., Vol. F3, (1973), pp. 561. http://dx.doi.org/10.1088/0305-4608/3/3/014[Crossref]
  • [17] R.C. Jones, R.G. Goodrich, L.M. Falicov: “Fermi Surface of Cadmium: Radio-Frequency Size Effect”, Phys. Rev., Vol. 174, (1958), pp. 672. http://dx.doi.org/10.1103/PhysRev.174.672[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475909
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.