Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2003 | 1 | 4 | 634-654

Article title

Formation and dynamics of Saturn and its disk simulated by using a new N-body model

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The formation of Saturn and its disk is simulated using a new N-body self-gravitational model. It is demonstrated that the formation of the disk and the planet is the result of gravitational contraction of a slowly rotated particle cloud that have a shape of slightly deformed sphere. The sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate in the core of the planet. The simulation program gives such parameters of Saturn as the escape velocity of about 35 km/s at the surface, density, rotational velocities of the rings and temperature distribution.

Publisher

Journal

Year

Volume

1

Issue

4

Pages

634-654

Physical description

Dates

published
1 - 12 - 2003
online
1 - 12 - 2003

Contributors

author
  • Kepler Simulation Lab, 11 Sturton Street, CB1 2SN, Cambridge, UK
author
  • Kepler Simulation Lab, 11 Sturton Street, CB1 2SN, Cambridge, UK

References

  • [1] L.B. Lucy: “A numerical approach to the testing of the fission hypothesis”, Astron. J., Vol. 82, (1977), pp. 1013. http://dx.doi.org/10.1086/112164[Crossref]
  • [2] R.A. Gingold and J.J. Monaghan: “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, MNRAS, Vol. 181, (1977), pp. 375–389.
  • [3] C. Heller and I. Shlosman: “Fueling Nuclear Activity in Disk Galaxies: Starbursts and Monsters”, ApJ, Vol. 424, (1994), pp. 84–105. http://dx.doi.org/10.1086/173874[Crossref]
  • [4] K. Bekki: “Formation of Stellar Bars in A Collapsing and Self-gravitating Two-Component Fluid”, ApJ, Vol. 483, (1997) pp. 608–624. http://dx.doi.org/10.1086/304282[Crossref]
  • [5] L. Hernquist and N. Katz: “TREESPH-A unification of SPH with the hierarchical tree method”, ApJS, Vol. 70, (1989), pp. 419–446. http://dx.doi.org/10.1086/191344[Crossref]
  • [6] N. Katz and J.E. Gunn: “Dissipational Galaxy Formation. I. Effects of Gasdynamics”, ApJ, Vol. 377, (1991), pp. 365. http://dx.doi.org/10.1086/170367[Crossref]
  • [7] J. Barnes and P. Hut: “A hierarchical O(N log N) force calculation algorithm”, Nature, Vol. 324, (1986), pp. 446. http://dx.doi.org/10.1038/324446a0[Crossref]
  • [8] P. Berczik: “Modelling the star formation in galaxies using the Chemo-Dynamical SPH code”, Astrophys. Space Sci., Vol. 27, (2000), pp. 103–126. http://dx.doi.org/10.1023/A:1002485702347[Crossref]
  • [9] Y.T. Liu and L. Lindblom: “Models of rapidly rotating neutron stars: remnants of accretion-induced collapse”, MNRAS, Vol. 324, (2001), pp. 1063. http://dx.doi.org/10.1046/j.1365-8711.2001.04395.x[Crossref]
  • [10] T. Padmanabhan: “Theoretical Astrophysics”, Cambridge University Press, 2000.
  • [11] A.L. Lane, C.W. Hord, R.A. West, L.W. Esposito, D. L. Coffeen, M. Sato, K.E. Simmons, R.B. Pomphrey, R.B. Morris: “Photopolarimetry from Voyager 2: Preliminary Results on Saturn, Titan, and the Rings”, Science, Vol. 215, (1982), pp. 537–543. http://dx.doi.org/10.1126/science.215.4532.537[Crossref]
  • [12] L.W. Esposito, M. O'Callaghan, R.A. West: “The Structure of Saturn's Rings: Implications from the Voyager Stellar Occultation”, Icarus, Vol. 56, (1983), pp. 439. http://dx.doi.org/10.1016/0019-1035(83)90165-3[Crossref]
  • [13] T.V. Gudkova, V.N. Zharkov: “Models of Jupiter and Saturn after Galileo mission”, Planetary and Space Science, Vol. 47, (1999), pp. 1201–1210. http://dx.doi.org/10.1016/S0032-0633(99)00044-6[Crossref]
  • [14] D. Lynden-Bell and J.E. Pringle: “The evolution of viscous discs and the origin of the nebular variables”, MNRAS, Vol. 168, (1974), pp. 603–637.
  • [15] A. Brahic: “Systems of colliding bodies in a gravitational field. I-Numerical simulation of the standard model”, Astron. Astrophys., Vol. 54, (1977), pp. 895–907.
  • [16] P. Goldreich and S. Tremaine: “The velocity dispersion in Saturn's rings”, Icarus, Vol. 34, (1978), pp. 227–239. http://dx.doi.org/10.1016/0019-1035(78)90164-1[Crossref]
  • [17] F.H. Shu and G.R. Stewart: “The collisional dynamics of particulate disks”, Icarus, Vol. 62, (1985), pp. 360–683. http://dx.doi.org/10.1016/0019-1035(85)90181-2[Crossref]
  • [18] L.W. Esposito: “Planetary rings”, Rep. Prog. Phys., Vol. 65, (2002), pp. 1741–1783. http://dx.doi.org/10.1088/0034-4885/65/12/201[Crossref]
  • [19] I. Newton: “Philosophiae naturalis principia mathematica (Mathematical principles of natural philosophy)”, Jussu Societatis Regiae ac Typis Josephi Streater, London, 1687.
  • [20] J. Kepler: “De harmonice mondi (The harmony of the world)”, Dc Cometis, Augsburg, 1619.
  • [21] J.N. Cuzzi, J.J. Lissauer, L. W. Esposito, J. B. Holberg, E.A. Marouf, G. L. Tyler, A. Bouschot: “Saturn's rings: Properties and processes”, In: R. Greenberg and A. Brahic, Eds.Planetary Rings, University of Arizona Press. Tucson, 1984, pp. 73–199.
  • [22] J.H. Jeans: “The Stability of a Sspherical Nebula”, Phil. Trans. Roy. Soc. London, Vol. 199, (1902), pp. 1–53.
  • [23] A. Brahic and B. Sicardy: “Apparent thickness of Saturns rings”, Nature, Vol. 289, (1981), pp. 447. http://dx.doi.org/10.1038/289447a0[Crossref]
  • [24] B. Sicardy, J. Lecacheux, P. Laques, R. Despiau, A. Auge: “Apparent thickness and scattering properties of Saturn's rings from March 1980 observations”, A&A, Vol. 108, (1982), pp. 296.
  • [25] A.L. Lane et al.: “Photopolarimetry from Voyager 2: Preliminary Results on Saturn, Titan, and the Rings Science”, Science, Vol. 265, (1982), pp. 537–543. http://dx.doi.org/10.1126/science.215.4532.537[Crossref]
  • [26] P.A. Rosen and J. Lissauer: “The Titan-1:0 Nodal Bending Wave in Saturn's Ring C”, Science, Vol. 241, (1988), pp. 690. http://dx.doi.org/10.1126/science.241.4866.690
  • [27] S.K. Chakrabarti: “Dynamics of Particles in Bending Waves of the Planetry Rings”, MNRAS, Vol. 238, (1989), pp. 1381.
  • [28] P.A. Rosen, G.A. Tyler, E.A. Marouf: “Resonance structures in Saturn's rings probed by radio occultation. II-Results and interpretation”, Icarus, Vol. 93, (1991), pp. 3. http://dx.doi.org/10.1016/0019-1035(91)90160-U[Crossref]
  • [29] F.W. Sears and G.L. Salihger: Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Addisin-Wesley Publishing Company, London, 1975.
  • [30] J. N. Cuzzi, J.J. Lissauer, L.W. Esposito, J.B. Holberg, E.A. Marouf, G.L. Tyler, A. Bouschot: Planetary Rings University of Arizona Press, Tucson, 1984, pp. 73–199.
  • [31] L.W. Esposito, J.N. Cuzzi, J.B. Holberg, E.A. Marouf, G.L. Tyler, C.C. Porco: Saturn, University of Arizona Press, Tucson, 1984, pp. 463–545.
  • [32] P.D. Nicholson, M.R. Showalter, L. Dones, R.G. French, S.M. Larson, J.J. Lissauer, C.A. McGhee, P. Seitzer, B. Sicardy, G.E. Danielson: “Observations of Saturn's Ring-Plane Crossings in August and November 1995”, Science, Vol. 272, (1996), pp. 509.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475908
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.