PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2003 | 1 | 4 | 556-573
Article title

Two models of quantum random walk

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We present an overview of two models of quantum random walk. In the first model, the discrete quantum random walk, we present the explicit solution for the recurring amplitude of the quantum random walk on a one-dimensional lattice. We also introduce a new method of solving the problem of random walk in the most general case and use it to derive the hitting amplitude for quantum random walk on the hypercube. The second is a special model based on a local interaction between neighboring spin-1/2 particles on a one-dimensional lattice. We present explicit results for the relevant quantities and obtain an upper bound on the speed of convergence to limiting probability distribution.
Publisher

Journal
Year
Volume
1
Issue
4
Pages
556-573
Physical description
Dates
published
1 - 12 - 2003
online
1 - 12 - 2003
Contributors
author
  • Research Centre for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11, Bratislava, Slovakia, jkosik@post.sk
References
  • [1] Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tools, U.S. Department of Commerce, National Bureau of Standards, Applied Mathematical Series, 1964–1972.
  • [2] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani: Quantum Walks On Graphs, quant-ph/0012090 v1.
  • [3] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous: “One-dimensional quantum walks”, In: Proc. of 33 rd Ann. ACM Symp. on Theory of Computing, pp. 37–49.
  • [4] P.W. Shor: In Proc. of the 35th Annual Symposium on Foundations of Computer Science IEEE Computer Society Press, Los Alamitos CA, 1994, pp. 124. http://dx.doi.org/10.1109/SFCS.1994.365700[Crossref]
  • [5] J. Kempe: Quantum random walk hit exponentially faster, quant-ph/0205083 v1.
  • [6] Norio Konno: A new type of limit theorems for the one-dimensional quantum random walk, quant-ph/0206103.
  • [7] C. Moore and A. Russel: Quantum walks on the hypercube, quant-ph0104137.
  • [8] David A. Meyer: From quantum Cellular Automata to Quantum Lattice Gases, quant-ph/9604003v2.
  • [9] A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D.A. Spielman: Exponential algorithmic speedup by quantum walk, quant-ph/0209131.
  • [10] N. Shenvi, J. Kempe, K.B. Whaley: A quantum random walk search algorithm, quant-ph/0210064.
  • [11] A. Nayak and A. Vishwanath: Quantum Walk on the Line, quant-ph/0010117 v1.
  • [12] Michael A. Nielsen and Isaac L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press, 2000, ISBN 0-52163503-9.
  • [13] A.M. Childs, E. Farhi, S. Gutman: An example of the difference between quantum and classical random walks, quant-ph/0103020.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475903
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.