Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2003 | 1 | 3 | 516-555

Article title

An introduction to physical theory of molecular evolution



Title variants

Languages of publication



This work is a tutorial in Molecular Evolution from the point of view of Physics. We discuss Eigen's model, a link between evolutionary theory and physics. We will begin by assuming the existence of (marco) molecules or replicators with the template property, that is, the capacity to self-replicate. According to this assumption, information will be randomly generated and destroyed by mutations in the code (i.e., errors in the copying process) and new bits of information will be fixed (made stable) by the existence of an external pressure on the system (i.e., selection), and the ability of the molecules to replicate themselves. Our aim is to build a model in order to describe molecular evolution from as general a standpoint as possible. As we will see, even very simple models from the theoretical point of view will have surprisingly deep consequences.










Physical description


1 - 9 - 2003
1 - 9 - 2003


  • Departamento Matemática Aplicada y Estadística, Escuela Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040, Madrid, Spain


  • [1] F. Crick: Life Itself: Its Nature and Origin, Simon and Schuster, Nueva York, 1981.
  • [2] A.G. Cairns-Smith: Seven Clues to the Origin of Life, Cambridge University Press, Cambridge, 1985.
  • [3] M. Smith and E. Szathmáry: The Major Transitions in Evolution, Oxford University Press, New York, 1995.
  • [4] D.R. Brooks and D.A. McLennan: Phylogeny, Ecology, and Behavior, University of Chicago Press, Chicago, 1991. (b) P.H. Harvey and M.D. Pagel: The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford and New Yor, 1991.
  • [5] J. Monod: El azar y la necesidad, Tusquets, Barcelona, 1981. (b) R. Shapiro: Origins: A Skeptic's Guide to the Creaction of Life on Earth, Summit Books, Nueva York, 1986. (c) C. de Duve: Vital Dust: Life as a Cosmic Imperative, Basic Books, Nueva York, 1995. (d) L. Smolin: The Life of the Cosmos, Cambridge University Press, Cambridge, 1997.
  • [6] B.O. Küpers: Information and the Origin of Life, Mass.: MIT Press, Cambridge, 1990. (b) H. Yockey: Information Theory and Molecular Biology, Cambridge University Press, Cambridge, 1992. (c) P. Davies: The fifth miracle.: The search for the origin and meaning of life, Simon and Schuster, New York, 1999.
  • [7] Y. Prigogine and I. Stengers: Order Out of Chaos, Heinemann, London, 1984.
  • [8] W. Gilbert: “The RNA World”, Nature, Vol. 319, (1986), pp. 618. (b) G.F. Joyce: “RNA evolution and the origins of life”, Nature, Vol. 338, (1989), pp. 217–224. (c) C.K. Biebricher, and W.C. Gardiner: “Molecular evolution of RNA in vitro”, Biophys. Chem, Vol. 66, 1997, pp. 179. (d) C.O. Wilke: “Selection for Fitness vs. Selection for Robustness in RNA Secondary Structure Folding”, Evolution, Vol. 55, (2001). pp. 2412–2420. http://dx.doi.org/10.1038/319618a0[Crossref]
  • [9] G. Joyce: “The antiquity of RNA-based evolution”, Nature, Vol. 418, (2002), pp. 214–221. http://dx.doi.org/10.1038/418214a[Crossref]
  • [10] M. Eigen: Steps toward Life, Oxford University Press, Oxford, 1985.
  • [11] B. Drossel: “Biological Evolution and Statistical Physics”, Advances in Physics, Vol. 50, (2001), pp. 209–295. http://dx.doi.org/10.1080/00018730110041365[Crossref]
  • [12] L. Peliti: Introduction to the statistical theory of Darwinian evolution, Lectures at the Summer College on Frustrated System, Trieste August 1997.
  • [13] B.M.R. Stadler and P.F. Stadler: “Molecular replicator dynamics”Santa Fe working paper, (2000), http://www.santafe.edu/sfi/publications/wpabstract/2002090409.
  • [14] J.A.G.M. de Visser: “The fate of microbial mutators”, Microbiology, Vol. 148, (2002), pp. 1247–1252. (b) J.E. LeClerc et. al.: “Hypermutable Strains Among E. coli and Salmonella Pathogens”, Science, Vol. 274, (1996), pp 1208–1211. (c) P.D. Sniegowski, P. Gerrish, R. E. Lenski: “Evolution of high mutation rates in experimental populations of E. coli”, Nature, Vol. 387, (1997), pp. 703705. (d) A. Giraud et al.: “Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut”, Science, Vol. 001, (2001), pp. 2606–2608.
  • [15] S. Spiegelman: “An approach to the experimental analysis of precellular evolution”, Quart. Rev. Biophys, Vol. 4, (1997), pp. 213–253. http://dx.doi.org/10.1017/S0033583500000639[Crossref]
  • [16] M. Eigen: “Selforganization of matter and the evolution of biological macromolecules”, Naturwissenshaften, Vol. 58, (1971), pp. 465–523 (b) C.K. Biebricher, M. Eigen, W.C. Gardiner: “Kinetics of RNA replication competition and selection among self-replicating RNA species”, Biochemistry, Vol. 24, (1983), pp. 6550–6560. (c) M. Eigen, J. McCaskill, P. Schuster: “Molecular quasispecies”Phys. Chem, Vol. 92, (1988), pp. 6881–6891. (d) M. Eigen, J. McCaskill, P. Schuster: “The molecular quasispecies”, Adv. Chem. Phys., Vol. 75, (1989), pp. 149–263. (e) M. Eigen: “Viral quasispecies”, Scientif. Am, Vol. 269, (1993), pp 32–39. http://dx.doi.org/10.1007/BF00623322[Crossref]
  • [17] M.A. Nowak: “What is a quasispecies?”Trends in Ecol. Evol., Vol. 7, (1991), pp. 118. http://dx.doi.org/10.1016/0169-5347(92)90145-2[Crossref]
  • [18] A.V. Ratner et al.: Molecular Evolution, Springer Verlag, Berlin, 1996.
  • [19] G.W. Rowe: Theoretical Models in Biology, Oxford University Press, New York, 1997.
  • [20] C. Adami: Introduction to Artificial Life, TELOS Springer Verlag, Santa Clara, 1998. (b) C.O. Wilke et al.: “Evolution of Digital Organisms at High Mutation Rate Leads to Survial of the Flattest”, Nature, Vol. 412, (2001), pp 331–333.
  • [21] T.S. Ray: An approach to the synthesis of life, In: Artificial Life II: A Proceedings Volume in the Santa Fe Institute the Sciences of Complexity, Vol. 10, Addison-Wesley, Redwood City, 1991, pp. 371–408.
  • [22] M. Nowak and P. Schuster: “Error Thresholds of Replication in Finite Populations”, J. Theor. Biol., Vol. 137, (1989), pp. 375395. (b) Y-C Zhang: “Quasispecies Evolution of Finite Populations”, Phys. Rev. E, Vol. 55, (1997), pp. R3817–R3819. (c) T. Wiehe: “Model dependency of error thresholds: the role of the fitness finctions and contracts between the finite and infinite sites models”, Genet. Res. Camb, Vol. 69, (1997), pp. 127–136. http://dx.doi.org/10.1016/S0022-5193(89)80146-8[Crossref]
  • [23] L. Chao: “Fitness of RNA virus decreased by Muller's ratchet”, Nature, Vol. 348, (1990), pp. 454. (b) G.P. Wagner and P. Krall: “What is the difference between models of error thresholds and Muller's ratchet?”, J. Math. Biol, Vol. 32, (1993), pp. 33–44. (c) W. Gabriel and R. Burger: “Fixation of Clonal Lineages under Muller's Ratchet”, Evolution, Vol. 54, (2000), pp 1116–1125. http://dx.doi.org/10.1038/348454a0[Crossref]
  • [24] M. Mitchell: An Introduction to Genetic Algorithms, Mass.: MIT Press, Cambridge, 1996.
  • [25] C. Adami: “Self-organized criticality in living systems”, Phys. Lett. A, Vol. 203, (1995), pp. 29–32. http://dx.doi.org/10.1016/0375-9601(95)00372-A[Crossref]
  • [26] H.J. Jensen: Self-Organized Criticality: Emergen Complex Behavior in Physical and Biological Systems, Cambridge University Press, New York 2000.
  • [27] M.E. Newman et al.: “Self-organized criticality in living systems-Comment”, Psys. Lett. A. Vol. 228, (1997), pp. 202. http://dx.doi.org/10.1016/S0375-9601(97)00108-4[Crossref]
  • [28] J.R. Lorsch and J.W. Szostak: “In vitro evolution of new ribozymes with polynucleotide kinase activity”, Nature, Vol. 371, (1994), pp. 31–36. http://dx.doi.org/10.1038/371031a0[Crossref]
  • [29] S. Kauffman: Origins of Order, Oxford University Press, Oxford, 1990.
  • [30] J. Swetina and P. Schuster: “Self-Replication with error-a model for polynucleotide replication”, Biophys. Chem., Vol. 16, (1982), pp. 329–345. (b) P. Schuster, J. Swetina: “Stationary mutant distributions and evolutionary optimization”, Bulletin of Mathematical Biology, Vol. 50 (1988), pp. 329–345. http://dx.doi.org/10.1016/0301-4622(82)87037-3[Crossref]
  • [31] R.V. Solé et al: “Red Queen dynamics, competition and critical points in a model of RNA virus quasispecies”, J. theor. Biol., Vol. 198, (1999), pp. 47–59. http://dx.doi.org/10.1006/jtbi.1999.0901[Crossref]
  • [32] C.L. Burch and L. Chao: “Evolvability of RNA virus is determined by its mutation neighborhood”, Nature, Vol. 406, (2000), pp. 625–628. (b) D.C. Krakauer, J.B. Plotkin: “Redundancy, antiredundancy, and robustness of genomes”, Proc. Nat. Acad. Sci., Vol. 99, (2002), pp. 1405–1409. http://dx.doi.org/10.1038/35020564[Crossref]
  • [33] E. Domingo and J.J. Holland: The evolutionary biology of viruses, S. Morse (ed.) Raven Press, New York, 1994., (b) E. Domingo and J.J. Holland: “RNA virus mutations and fitness for survival”, Annu. Rev. Microbiol. Vol. 51, (1997), pp 151. (c) E. Domingo, C.K. Biebricher, M. Eigen, J.J. Holland: Quasispecies and RNA virus evolution: Principles and consequences, Landes Bioscience, Georgetown, 2001. (d) S. Crotty, C.E. Cameron, R. Andino: “RNA virus error catastrophe: direct molecular test using ribavirin”, Proc. Natl. Acad. Sci., Vol. 98, (2001), pp. 6895–6900.
  • [34] I. Leuthaüsser: “Statistical mechanics of Eigen's evolution model”, J. Stat. Phys., Vol. 48, (1987), pp. 343. (b) I. Leuthaüsser: “An exact correspondence between Eigen evolution model and two-dimensional ising system”, J. Chem. Phys, Vol. 84, (1986), pp. 1884–1885. http://dx.doi.org/10.1007/BF01010413[Crossref]
  • [35] P. Tarazona: “Error threshold for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models”Phys. Rev. A, Vol. 45, (1992), pp. 6038–6050. (b) D. Alves and J.F. Fontanari: “Population genetics approach to the quasispecies model”, Phys. Rev. E Vol. 54, (1996), pp. 4048. (c) E. Baake, M. Baake, H. Wagner: “Ising quantum chain is equivalent to a model of biological evolution”, Phys. Rev. Lett Vol. 78, (1997), pp. 559–562. (d) E. Baake, M. Baake, H. Wagner: “Quantum mechanics versus classical propability in biological evolution”, Phys. Rev. E, Vol. 57, (1998), pp. 1191–1192. http://dx.doi.org/10.1103/PhysRevA.45.6038[Crossref]
  • [36] T. Halpin-Healy and Y.C. Zhang: “Kinetic Roughening, Stochastic Growth, Directed Polymers and All That”, Phys. Rep, Vol. 254, (1995), pp. 215, (b) A. Galluccio, R. Graber, Y.C. Zhang: “Diffusion on a hypercubic lattice with pinning potential: exact results for the error-catastrophe problem in biological evolution”, J. Phys. A, Vol. 29, (1996), pp. L249. (c) S. Galluccio: “Exact solution of the quasispecies model in a sharply-peaked landscape”, Phys. Rev. E, Vol. 56, (1997), pp. 4526. http://dx.doi.org/10.1016/0370-1573(94)00087-J[Crossref]
  • [37] P.W. Anderson: Proc. Natl. Acad. Sci. USA, Vol. 80, (1983), pp. 3386–3390 (b) L. Demetrius: “Statistical mechanics and population biology”, J. Stat. Phys, Vol. 30, (1983), pp. 709–753. (c) C. Amitrano, L. Peliti, M. Saber: “Population dynamics in a spin-glass model of chemical evolution”, J. Mol. Evol, Vol. 29, (1989), pp. 513. (d) D. Alves and J.F. Fontanari: “Error threshold in the evolution of diploid organisms”, J. Phys. A. Math. Gen, Vol. 30, (1997), pp. 2601–2607. (e) P.R.A. Campos and J.F. Fontanari: “Finite-size scaling of the quasispecies model”, Phys. Rev. E, Vol. 58, (1998), pp. 2664–2667. (f) P.R.A. Campos and J.F. Fontanari: “Finite-size scaling of the error threshold transition”, J. Phys. A, Vol. 32, (1999), pp. L1–L7. (g) J. Hermission, H. Wagner, M. Baake: “Four-state quantum chain as a model for sequence evolution”, J. Stat. Phys, Vol. 102, (2001), pp. 315–343. (h) E. Baake and W. Gabriel: “Biological evolution through mutation, selection, and drift: An introductory review”, Ann. Rev. Comp. Phys. VII, World Scientific, Vol. 9, (2000), pp. 203–264. http://dx.doi.org/10.1073/pnas.80.11.3386[Crossref]
  • [38] R. García-Pelayo: “A linear algebra model for quasispecies”, Physica A, Vol. 309, (2002), pp. 131–156. (b) T. Wiehe: “Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and infinite sites models”, Genet. Res. Camb, Vol. 69, (1997), pp. 127. http://dx.doi.org/10.1016/S0378-4371(02)00629-5[Crossref]
  • [39] S. Franz and L. Peliti: “Error threshold in simple landscapes”, J. Phys. A, Vol. 30, (1997), pp. 4481. (b) M. Nilsson and N. Snoad: “Optimal mutation rates on dynamic landscapes”, Phys. Rev. Lett, Vol. 84, (2000), pp. 191–194. (c) C.O. Wilke, C. Ronnewinkel, T. Martinetz: “Dynamic fitness landscapes in molecular evolution”, Phys. Rep, Vol. 349, (2001), pp. 395–446. http://dx.doi.org/10.1088/0305-4470/30/13/006[Crossref]
  • [40] M. Kimura: “The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations”, Genetics, Vol. 61, (1969), pp. 893. (b) M. Kimura: The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, 1983. (c) M. Kimura, Population Genetics, Molecular Evolution, and the Neutral Theory: Selected Papers, The University of Chicago Press, Chicago, 1994.
  • [41] C. Reidys, P. Stadler, P. Schuster: “Replication and mutation on neutral networks”, Bull. Math. Biol. Vol. 59, (1997), pp. 339. (b) M.E.J. Newman and R. Engelhardt: “Effects of selective neutrality on the evolution of molecular species”, Proc. R. Soc. London B, Vol. 265, (1998), pp. 1333–1338.
  • [42] J. Hofbauer and K. Sigmund: The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, 1988. (b) L. Demetrius, P. Schuster, K. Sigmund: “Polynucleotide evolution and branching processes”, Bull. Math. Biol. Vol. 47, (1985), pp. 239–262.
  • [43] F. Montero and F. Morán: Biofísica, Eudema, Madrid, 1992.
  • [44] F. Montero, C.E. Sanz, M.A. Andrade: Evolucin Prebiótica, Eudema, Madrid, 1993.
  • [45] M. Eigen and P. Schuster: The hypercycle: a principle of natural self-organization, Springer-Verlag, Berlin, 1979.
  • [46] J.M. Smith: “Hypercycles and the origin of life”, Nature, Vol. 280, (1979), pp. 445–446 (b) R.M. May: “Hypercycles spring to life”, Nature, Vol. 353, (1991), pp. 607. http://dx.doi.org/10.1038/280445a0[Crossref]
  • [47] B.O. Küpers: Molecular Theory of Evolution, Springer Verlag, Berlin, 1988. (b) R. Burger: The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester, 2001.
  • [48] M. Boerlijst and P. Hogeweg: “Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites”, Physica D, Vol. 48, (1991), pp. 17. (b) M.B. Cronhjort: “Hypercycles versus parasites in the origin of life: model dependence in spatial hypercycle dynamics”, Origins Life Ecol. Biosphere, Vol. 25, (1993), pp. 227. (c) M.B. Cronhjort and C. Blomberg: “Hypercycles versus parasites in a two-dimensional partial differential equations”, J. theor. Biol, Vol. 169, (1994), pp. 34. http://dx.doi.org/10.1016/0167-2789(91)90049-F[Crossref]
  • [49] P. Szabó, I. Scheuring, T. Czárán, E. Szathmáry: “In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity”, Nature, Vol. 420, (2002), pp. 340–343. http://dx.doi.org/10.1038/nature01187[Crossref]
  • [50] D.H. Lee, K. Severin, Y. Yokobayashi, M.R. Ghadiri: “Emergence of Symbiosis in Peptide Self-Replication through a Hypercyclic Network”, Nature, Vol. 390, (1997), pp. 591–594. http://dx.doi.org/10.1038/36554[Crossref]
  • [51] E. Szathmáry: “The Integration of the Earliest Genetic Information”, Trends in Ecology and Evolution, Vol. 4, (1989), pp. 200–204 (b) D. Sievert and G. von Kiedrowski: “Self-replication of Complementary Nucleotide Based Oligomers”, Nature, Vol. 369, (1994), pp. 221–224. (c) I. Scheruing, and E. Szathmáry: “Survival of Replicators with Parabolic Growth Tendency and Exponential Decay”, J. theor. Biol., Vol. 212, (2001), pp. 99–105, (d) B.M.R. Stadler, P.F. Stadler, P.R. Wills: “Evolution in Systems of Ligation Based Replicators”, Z. Phys. Chem., Vol. 216, (2002), pp. 21–34. http://dx.doi.org/10.1016/0169-5347(89)90073-6[Crossref]
  • [52] G. Károlyi et al., “Chaotic Flow: the Physics of Species Coexistence”, Proc. Nat. Acad. Sci., Vol. 97, (2000), pp. 13661–13665. (b) I. Scheuring et al.: “Competing Populations in Flows with Chaotic Mixing”, Theor. Popul. Biol, Vol. 63, (2003), pp. 77–90. http://dx.doi.org/10.1073/pnas.240242797[Crossref]
  • [53] A. Poole, D. Jeffares, D. Penny: “Early Evolution: Prokaryotes, the New Kids on the Block”, Bio Essays, Vol. 21, (1999), pp. 880–889.
  • [54] E. Schrödinger: What Is Life? Cambridge University Press, Cambridge, 1944.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.