Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2003 | 1 | 3 | 453-462

Article title

Steady-state analytical solutions for the lattice boltzmann equation



Title variants

Languages of publication



A general class of analytical solutions of the lattice Boltzmann equation is derived for two-dimensional, steady-state unidirectional flows. A subset of the solutions that verifies the corresponding Navier-Stokes equations is given. It is pointed out that this class includes, e.g., the Couette and the Poiseuille flow but not, e.g., the basic Kolmogorov flow. For steady-state non-unidirectional flows, first and second order solutions of the lattice Boltzmann equation are derived. Practical consequences of the analysis are mentioned. Differences between the technique applied here and those used in some earlier works are emphasized.










Physical description


1 - 9 - 2003
1 - 9 - 2003


  • [1] S. Chen and G.D. Doolen: “Lattice Boltzmann method for fluid flows”, Annual Rev. Fluid Mech., Vol. 30, (1998), pp. 329. http://dx.doi.org/10.1146/annurev.fluid.30.1.329[Crossref]
  • [2] G. Házi, A.R. Imre, G. Mayer, I. Farkas: “Lattice Boltzmann methods for two-phase flow modeling”, Ann. Nucl. Energy, Vol. 29, (2002), pp. 1421. http://dx.doi.org/10.1016/S0306-4549(01)00115-3[Crossref]
  • [3] D.R. Noble, S. Chen, J.G. Georgiadis, R.O. Buckius: “A consistent hydrodynamic boundary-condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7, (1995), pp. 203. http://dx.doi.org/10.1063/1.868767[Crossref]
  • [4] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet: “Lattice gas hydrodynamics in two and three dimensions”, Compl. Syst., Vol. 1, (1987), pp. 648.
  • [5] Y.H. Qian, D. d'Humieres, P. Lallemand, “Lattice BGK models for Navier-Stokes equation”, Europh. Letters, Vol. 17, (1992), pp. 479.
  • [6] Q. Zou, S. Hou, G.D. Doolen: “Analytical solutions of the lattice Boltzmann BGK model”, J. Stat. Phys., Vol. 81, (1995), pp. 319. http://dx.doi.org/10.1007/BF02179981[Crossref]
  • [7] B. Legras, B. Villone, U. Frisch: “Dispersive stabilization of the inverse cascade for the Kolmogorov flow”, Phys. Rev. Letters, Vol. 82, (1999), pp. 4440. http://dx.doi.org/10.1103/PhysRevLett.82.4440[Crossref]
  • [8] L.S. Luo, H. Chen, S. Chen, G.D. Doolen, Y.C. Lee: “Generalized hydrodynamic transport in lattice-gas automata”, Phys. Rev. A, Vol. 43, (1991), pp. 7097. http://dx.doi.org/10.1103/PhysRevA.43.7097[Crossref]
  • [9] L.S. Luo: “Analytic solutions of linearized lattice Boltzmann equation for simple flows”, J. Stat. Phys., Vol. 88, (1997), pp. 913. http://dx.doi.org/10.1023/B:JOSS.0000015178.19008.78[Crossref]
  • [10] X. He, Q. Zou, L.S. Luo, M. Dembo: “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model”, J. Stat. Phys., Vol. 87, (1997), pp. 115. http://dx.doi.org/10.1007/BF02181482[Crossref]
  • [11] Q. Zou, S. Hou, S. Chen, G.D. Doolen: “An improved incompressible lattice Boltzmann model for time-independent flows”, J. Stat. Phys., Vol. 81, (1995), pp. 35. http://dx.doi.org/10.1007/BF02179966[Crossref]
  • [12] D. d'Humieres and I. Ginzburg: “Multi-reflection boundary conditions for lattice Boltzmann models”, ITWM Report, Nr. 38, (2002).
  • [13] G. Házi: “Accuracy of the lattice Boltzmann method based on analytical solutions”, Phys. Rev. E, Vol. 67, (2003), pp. 056705. http://dx.doi.org/10.1103/PhysRevE.67.056705[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.