Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 3 | 351-375

Article title

Radiative spectra of thermal electromagnetic noise induced by planar realistic dielectrics


Title variants

Languages of publication



Spectral characteristics of stochastic fields and their spatial derivatives in various planar structures composed by lossy materials described by realistic dielectric functions are numerically calculated based on solutions to the problems of multipolar electromagnetic fields in a plane layered geometry. A displacement of the maximum of the spectral power densities for spatial derivatives of fluctuating fields to the high-frequency domain, a resonant increase in the density of states of the fluctuating fields at the frequencies of interface excitations and interference modes for the radiative part of the spectra, the influence of geometry on the density of states, and other peculiarities are found by numerical calculations and graphically demonstrated. Interpretations of the above effects are provided.










Physical description


1 - 9 - 2005
1 - 9 - 2005


  • Institute for Physics of Microstructures RAS, 603600 Nyzhny Novgorod, GSP-105, Russia
  • Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, D-48149, Münster, Germany
  • Institute for Physics of Microstructures RAS, 603600 Nyzhny Novgorod, GSP-105, Russia


  • [1] M.L. Levin and S.M. Rytov: Theory of equilibrium thermal fluctuations in electrodynamics, Nauka, Moscow, 1967.
  • [2] S.M. Rytov, Yu.A. Kravtsov and V.I. Tatarskii: Principles of Statistical Radiophysics, Springer-Verlag, Berlin, 1989.
  • [3] E.M. Lifshitz and L.P. Pitaevskii: Statistical Physics. Part 2. Theory of the Condensed State, Nauka, Moscow, 1978.
  • [4] G.S. Agarwal: “Quantum electrodynamics in the presence of dielectrics and, conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries”, Phys. Rev. A, Vol. 11, (1975), pp. 230–242. http://dx.doi.org/10.1103/PhysRevA.11.230[Crossref]
  • [5] G.S. Agarwal: “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surfacedepedent response functions”, Phys. Rev. A, Vol. 11, (1975), pp. 253–264. http://dx.doi.org/10.1103/PhysRevA.11.253[Crossref]
  • [6] L.W. Li, P.S. Kooi, M.S. Leong and T.S. Yeo: “On the eigenfunction expansion of dyadic Green’s function in planarly stratified media”, J. of Electromagn. Waves and Appl., Vol. 8(6), (1994), pp. 663–678.
  • [7] M.S. Tomaš: “Green function for multilayers: Light scattering in planar cavities”, Phys. Rev A, Vol. 51(3), (1995), pp. 2545–2559. http://dx.doi.org/10.1103/PhysRevA.51.2545[Crossref]
  • [8] I. Dorofeyev, H. Fuchs and J. Jersch: “Spectral composition of electromagnetic fluctuations induced by a lossy layered system”, Ann. der. Phys., Vol. 12(7–8), (2003), pp. 421–437. http://dx.doi.org/10.1002/andp.200310020[Crossref]
  • [9] I. Dorofeyev, H. Fuchs and J. Jersch: “Spectral properties of fluctuating electromagnetic fields in a plane cavity: Implication for nanoscale physics”, Phys. Rev. E, Vol. 65, (2002), pp. 026610. http://dx.doi.org/10.1103/PhysRevE.65.026610[Crossref]
  • [10] R. Balian and C. Bloch: “Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces”, Annals of Physics, Vol. 64, (1971), pp. 271–307. http://dx.doi.org/10.1016/0003-4916(71)90286-7[Crossref]
  • [11] A. Sommerfeld: Partielle Differentialleichungen der Physik, Leipzig, 1948.
  • [12] F. Abeles (Ed.): Optical properties of solids, North-Holland Publ. Comp., Amsterdam, 1972.
  • [13] E.D. Palik (Ed.): Handbook of optical constants of solids, Academic Press, Inc., Orlando, 1985.
  • [14] R. Fuchs, K.L. Kliewer and W.J. Pardee: “Optical Properties of an Ionic Crystal Slab”, Phys. Rev., Vol. 150(2), (1966), pp. 589–596. http://dx.doi.org/10.1103/PhysRev.150.589[Crossref]
  • [15] V.M. Agranovich and D.L. Mills (Eds.): Surface Polaritons, North Holland, Amsterdam, 1982.
  • [16] E.A. Vinogradov: “Polaritons of a semiconductor microcavity”, Uspehi Fiz. Nauk, Vol. 172(12), (2002), pp. 1371–1410.
  • [17] R. Carminati and J.-J. Greffet: “Near-field effects in spatial coherence of thermal sources”, Phys. Rev. Lett., Vol. 82(8), (1999), pp. 1660–1663. http://dx.doi.org/10.1103/PhysRevLett.82.1660[Crossref]
  • [18] K. Joulain, R. Carminati, J.-P. Mulet and J-J. Greffet: “Definition and measurement of the local density of electromagnetic states close to an interface”, Phys. Rev. B, Vol. 68, (2003), pp. 245405. http://dx.doi.org/10.1103/PhysRevB.68.245405[Crossref]
  • [19] L. Felsen and N. Marcuvitz: Radiation and scattering of waves, Printice-Hall Inc., Englewood Cliffs, N.J., 1973.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.