Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 3 | 339-350

Article title

Tunnelling time of a gaussian wave packet through two potential barriers


Title variants

Languages of publication



The resonant and non-resonant dynamies of a Gaussian quantum wave packet travelling through a double barrier system is studied as a function of the initial characteristics of the spectrum and of the parameters of the potential. The behaviour of the tunnelling time shows that there are situations where the Hartman effect occurs, while, when the resonances are dominant, and in particular for b>π/Δk (b being the inter-barrier distance and Δk the spectrum width), the tunnelling time becomes very large and the Hartman effect does not take place.










Physical description


1 - 9 - 2005
1 - 9 - 2005


  • Dipartimento di Fisica, Università degli Studi di Milano-INFN-INFM, Via Celoria, 16, Milano, Italy
  • Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki, 47 252028, Kiev, Ukraine


  • [1] V.S. Olkhovsky, E. Recami and G. Salesi “Superluminal Tunneling through two Successive Barriers”, Europhysics Letters, Vol. 57, (2002), pp. 879–885. http://dx.doi.org/10.1209/epl/i2002-00592-1[Crossref]
  • [2] Y. Aharonov, N. Erez and B. Reznik: “Superoscillations and Tunneling Times’, Physical Review A, Vol. 65, (2003), pp. 052124. http://dx.doi.org/10.1103/PhysRevA.65.052124[Crossref]
  • [3] A.P.L. Barbero, H.E. Hernandez-Figueroa and E. Recami: “Propagation Speed of Evanescent Modes”, Physical Review E, Vol. 62, (2000), pp. 8628–8625. http://dx.doi.org/10.1103/PhysRevE.62.8628[Crossref]
  • [4] S. Longhi, P. Laporta, M. Belmonte and E. Recami: “Measurement of Superluminal Optical Tunneling Times in Double-Barrier Photonic Band Gaps”, Physical Review E, Vol. 65, pp. 046610.
  • [5] G. Nimtz: “On superluminal tunnelling” submitted to Elsevier Science and private communication, preprint.
  • [6] T.E. Hartman: “Tunneling of a Wave Packet”, Journal of Applied Physics, Vol. 33, (1962), pp. 3427–3433. http://dx.doi.org/10.1063/1.1702424[Crossref]
  • [7] J.R. Fletcher: “Time Delay in Tunnelling through a Potential Barrier”, Journal of Physics C, Vol. 18, (1985), pp. 255–259.
  • [8] V.S. Olkhovsky and E. Recami: “Recent Developments in the Time Analysis of Tunneling Processes”, Physics Report, Vol. 214, (1992), pp. 339–358; V.S. Olkhovsky, E. Recami and J. Jakiel: “Unified Time Analysis of Photon and Particle Tunneling”, Physics Report, Vol. 338, (2004), pp. 133–178. http://dx.doi.org/10.1016/0370-1573(92)90015-R[Crossref]
  • [9] S. Collins, D. Lowe and J.R. Barker: “The Quantum Mechanical Tunnelling Time Problem-Revisited”, Journal of Physics C: Solis State Physics, Vol. 20, (1987), pp. 6213–6232. http://dx.doi.org/10.1088/0022-3719/20/36/021[Crossref]
  • [10] J.A. Stovneng and E.H. Hauge: “Time-Dependent Resonant Tunnelling of Wave Packets in the Tigh-binding Model”, Physical Review B, Vol. 44, (1991), pp. 13582–13594. http://dx.doi.org/10.1103/PhysRevB.44.13582[Crossref]
  • [11] Yong Guo, Bing-Lin Gu, Jing-Zi Yu, Zhong Zeng and Yoshiyuki Kawazoe: “Resonant Tunneling in Step-Barrier Structures under an Applied Electric Field”, Journal of Applied Physics, Vol. 84, (1998), pp. 918–925. http://dx.doi.org/10.1063/1.368156[Crossref]
  • [12] V.S. Olkhovsky, E. Recami and A.K. Zaichenko: “Resonant and non-resonant tunneling through a double barrier”, to be published on Europhysics Letters.
  • [13] C. Cohen-Tannoudji, B. Diu and F. Laloe: Quantum Mechanics, Wiley-Interscience Publication, Paris, 1977.
  • [14] A. Goldberg, H.M. Schey and J.L. Schwartz: “Computer-generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena”, American Journal of Physics, Vol. 35, (1967), pp. 137–145.
  • [15] J.G. Muga and C.R. Leavens: “Arrival Times in Quantum Mechanics”, Physics Reports, Vol. 338, (2000), pp. 353–438. http://dx.doi.org/10.1016/S0370-1573(00)00047-8[Crossref]
  • [16] V.S. Olkhovsky, V. Petrillo and A.K. Zaichenko: “Decrease of the Tunneling Time and Violation of the Hartman Effect for Large Barriers”, Physical Review A, Vol. 70, (2004), pp. 034103. http://dx.doi.org/10.1103/PhysRevA.70.034103[Crossref]
  • [17] S. Chu and S. Wong: “Linear Pulse Propagation in an Absorbing Medium”, Physical Review Letters, Vol. 48, (1982), pp. 738–741. http://dx.doi.org/10.1103/PhysRevLett.48.738[Crossref]
  • [18] E.H. Hauge, J.P. Falck and T.A. Fjeldly: “Transmission and Reflection Times for Scattering of Wave packets off Tunneling Barriers”, Physical Review B, Vol. 36, (1987), pp. 4203–4214. http://dx.doi.org/10.1103/PhysRevB.36.4203[Crossref]
  • [19] V. Petrillo and D. Janner: “Relativistic Analysis of a Wave Packet Interacting with a Quantum-mechanical Barrier”, Physical Review A, Vol. 67, (2003), pp. 012110. http://dx.doi.org/10.1103/PhysRevA.67.012110[Crossref]
  • [20] Li-Gang Wang, Nian-Hua Liu, Qiang Liu and Shi-Yao Zhu: “Superluminal Propagation of Light Pulses: a Result of Interference”, Physical Review E, Vol. 68, (2003), pp. 066606. http://dx.doi.org/10.1103/PhysRevE.68.066606[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.