Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 2 | 329-356

Article title

Polarons in axial transport in single-layer high-Tc superconductors


Title variants

Languages of publication



The temperatureT dependencies ρ(T) of normal state electric resistivitiesρ
c (axial) andρ
ab (in plane) of single-layer high-T
c superconductors show common trends: AsT is raised, the resistivity first drops steeply before it starts rising αT above an apparent semiconductor-to-metal crossoverT
cross. To analyze ρ(T) we plottT/ρ againstT at various dopingsx for bothρ
c andρ
ab.T/ρ is inversely proportional to the traversal time across a potential barrier as an ionic particle drifts in an electric field. We findT/ρ in good agreement with theT dependence of the quantum rate of migrating particles: AsT is raised, a zero-point rate at the lowestT is extended to a nearly flat plateau before a thermally activated branch sets in. We also find evidence for the admixture of 1- & 2-phonon absorptions below the Arrhenius range. These features shape the semiconductor-like branch below Tcross. AboveT
cross a metallic-like branch sets in, its αT character deriving from the field coupling of the migrating particle. Our analysis suggests that metal physics may not suffice if ionic features play a role in transport. We attribute our conclusions to the drift of strong-coupling polarons along Cu−O bonds. These “bond polarons” originate from carrier scattering by double-well potentials associated with the bonds. A bond polaron dissociates to a free hole as it passes onto a neighboring O-O link.










Physical description


1 - 6 - 2004
1 - 6 - 2004


  • Central Laboratory for Photoprocesses, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784, Sofia, Bulgaria
  • Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784, Sofia, Bulgaria
  • Fulbright Research Fellow, Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Dr., 92093-0340, La Jolla, CA
  • PGA Solutions, 919 Master Dr., 43119, Galloway, OH


  • [1] G.J. Bednorz and K.A. Müller: “Perovskite-type oxides-The new approach to high-Tc superconductivity”, Reviews of Modern Physics, Vol. 60, (1987), pp. 585–600. http://dx.doi.org/10.1103/RevModPhys.60.585[Crossref]
  • [2] V.J. Emery, S.A. Kivelson and O. Zachar: “Spin-gap proximity effect mechanism of high temperature superconductivity”, Physical Review B, Vol. 56, (1997), pp. 6120–6147. http://dx.doi.org/10.1103/PhysRevB.56.6120[Crossref]
  • [3] J.H. Miller, Jr. and J.R. Claycomb: “Classical and high-temperature superconductivity”, In: M.P. Das (Ed.): Proc. Summer School Workshop on Condensed Matter Physics, Canberra Australia, 1997, pp. 1–43.
  • [4] M.B. Maple: “High temperature superconductivity”, Journal of Magnetism and Magnetic Materials, Vol. 177–181, (1998), pp. 18–30. http://dx.doi.org/10.1016/S0304-8853(97)00999-2[Crossref]
  • [5] R.J. Radtke and K. Levin: “Origin of intrinsic Josephson coupling in the cuprates and its relation to order parameter symmetry: An incoherent hopping model”, Physica C, Vol. 250, (1995), pp. 282–294. http://dx.doi.org/10.1016/0921-4534(95)00359-2[Crossref]
  • [6] A.A. Abrikosov: “Resonant tunneling in high-Tc superconductors”, Argonne National Laboratory, 1998, preprint.
  • [7] M. Georgiev, M. Ivanovich, I. Polyanski and P. Petrova: “Renormalized phonon frequencies and electric resistivity along c-axis in single-plane high-temperature superconductors: A double-well analysis”, In: M. Ausloos and S. Kruchinin (Ed.): Proc. NATO ARW, Yalta (Ukraine), April 28–May 2, 1998, Kluwer, Dordrecht, 1998, pp. 173–186.
  • [8] M. Zoli: “c-axis resistivity in high-Tc superconductors”, Physical Review B, Vol. 56, (1997), p. 111. http://dx.doi.org/10.1103/PhysRevB.56.111[Crossref]
  • [9] N.E. Hussey, J.R. Cooper, Y. Kodama and Y. Nishihara: “Out-of-plane magnetoresistance of La2−x Srx CuO4: Evidence for interplanar scattering in the c-axis transport”, Physical Review B, Vol. 58, (1998), pp. 1–4. http://dx.doi.org/10.1103/PhysRevB.58.R611[Crossref]
  • [10] A.G. Rojo and K. Levin: “Model for c-axis transport in high Tc cuprates”, Physical Review B, Vol. 48, (1993), pp. 16861–16864. http://dx.doi.org/10.1103/PhysRevB.48.16861[Crossref]
  • [11] A.A. Alexandrov and N.F. Mott: “Bipolarons”, Reports on Progress in Physics, Vol. 57, (1994), pp. 1197–1288. http://dx.doi.org/10.1088/0034-4885/57/12/001[Crossref]
  • [12] Y. Ando, G.S. Boebinger, A. Passner, N.L. Wang, C. Geibel, and F. Steglich: “Metallic in-plane and divergent out-of-plane resistivity of a high-Tc cuprate in the zero-temperature limit”, Physical Review Letters, Vol. 77, (1996), pp. 2065–2069. http://dx.doi.org/10.1103/PhysRevLett.77.2065[Crossref]
  • [13] G.S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, “Insulator-to-metal crossover in the normal state of La2−x Srx CuO4 near optimum doping”, Physical Review Letters, Vol. 77, (1996), pp. 5417–5420. http://dx.doi.org/10.1103/PhysRevLett.77.5417[Crossref]
  • [14] N.F. Mott and E.A. Davis: Electron Processes in Non-Crystalline Materials, Clarendon, Oxford, 1979.
  • [15] Y. Zha, S.L. Cooper and D. Pines: “Model of c-axis resistivity of high Tc cuprates”, Physical Review B, Vol. 53, (1996), pp. 8253–8256. http://dx.doi.org/10.1103/PhysRevB.53.8253[Crossref]
  • [16] A.S. Alexandrov, V.V. Kabanov and N.F. Mott: “Coherent ab and c Transport Theory of High-Tc Cuprates”, Physical Review Letters, Vol. 77, (1996), pp. 4796–4799. http://dx.doi.org/10.1103/PhysRevLett.77.4796[Crossref]
  • [17] A.S. Alexandrov: “Logarithmic normal state resistivity of high-Tc cuprates”, Physics Letters A, Vol. 236, (1997), pp. 132–136. http://dx.doi.org/10.1016/S0375-9601(97)00714-7[Crossref]
  • [18] Y. Ando, G.S. Boebinger, A. Passner, T. Kimura and K. Kishio: “Logarithmic diveregence of both in-plane and out-of-plane normal-state resistivities of superconducting La2−x Srx CuO4 in the zero-temperature limit”, Physical Review Letters, Vol. 75, (1995), pp. 4662–4665. http://dx.doi.org/10.1103/PhysRevLett.75.4662[Crossref]
  • [19] A.B. Lidiard: “Ionic Conductivity”, In: Handbuch der Physik, Vol. 20, Part II, Springer, Berlin, 1957.
  • [20] L. Mihailov, M. D. Ivanovich and M. Georgiev: “Tc-x phase diagrams and infrared spectra due to axial charge-transfer modes in La2−x Srx CuO4: A composite boson model”, Journal of the Physical Society of Japan, Vol. 62, (1993), pp. 2431–2444. http://dx.doi.org/10.1143/JPSJ.62.2431[Crossref]
  • [21] S.G. Christov: “Adiabatic polaron theory of electron hopping in crystals: A reaction-rate approach”, Physical Review B, Vol. 26, (1982), pp. 6918–6935. http://dx.doi.org/10.1103/PhysRevB.26.6918[Crossref]
  • [22] M. Georgiev: “Reaction rate approach to non-radiative transitions in polar solids”, Revista Mexicana de Fisica, Vol. 31, (1985), pp. 221–257.
  • [23] I.B. Bersuker: The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Academic Press, New York, 1984.
  • [24] L.F. Feiner, M. Grilli and C. Di Castro: “Apical oxygen ions and the electronic structure of the high Tc cuprates”, Physical Review B, Vol. 45, (1992), pp. 10647–10669. http://dx.doi.org/10.1103/PhysRevB.45.10647[Crossref]
  • [25] M. Borissov and M. Georgiev: “Pairing of off-center polarons due to dipole-dipole interaction: Possible clue to the high-temperature superconductivity”, Zeitschrift fur Physik B-Condensed Matter Vol. 70, (1988), pp. 413–420. http://dx.doi.org/10.1007/BF01312113[Crossref]
  • [26] R. Mealli and D.M. Proserpio: “Computer Aided Composition of Atomic Orbitals (A Package of Programs for Molecular Orbital Analysis)”, Journal of Chemical Education, Vol. 67, (1990), pp. 399–402. http://dx.doi.org/10.1021/ed067p399[Crossref]
  • [27] J. Jäckle: “On the ultrasonic attenuation in glasses at low temperatures”, Zeitschrift fur Physik, Vol. 257, (1972), pp. 212–223; J. Jäckle, L. Piche, W. Arnold and S. Hunklinger: “Elastic effects of structural relaxation in glasses at low temperatures”, Journal of Non-Crystalline Solids, Vol. 20, (1976), pp. 365. http://dx.doi.org/10.1007/BF01401204[Crossref]
  • [28] X.-X. Bi and P.C. Ecklund: “Polaron contribution to the infrared optical response of La2−x Srx CuO4+δ and La2−x Srx NiO4+δ”, Physical Review B, Vol. 70, (1993), pp. 2625–2628.
  • [29] A. Vavrek, M. Borissov, and M. Georgiev: “Vibronic theory of high- temperature superconductivity”, In: M. Borissov’s Memorial Volume, Bulgarian Academy of Sciences, Sofia, 2004; A. Vavrek, M. Borissov and L. Mihailov: “Vibronic optical absorption in LaSCO and YBCO”, Comptes rendus de l’Academie bulgare des Sciences, Vol. 43, (1990), pp. 33–36.
  • [30] N.F. Mott: “The spin-polaron theory of high-Tc superconductivity”, Advances in Physics, Vol. 39, (1990), pp. 55–81. http://dx.doi.org/10.1080/00018739000101471[Crossref]
  • [31] M. Georgiev, M. Ivanovich, I. Polyanski, P. Petrova, S. Tsintsarska and A. Gochev: “Renormalized phonon frequencies and electric resistivity along the c-axis in single-plane high-temperature superconductors: a double-well analysis”, Bulgarian Journal of Physics, Vol. 28, (2001), pp. 63–75.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.