PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2005 | 3 | 4 | 636-659
Article title

The cubic period-distance relation for the Kate reversible pendulum

Content
Title variants
Languages of publication
EN
Abstracts
EN
We describe the correct cubic relation between the mass configuration of a Kater reversible pendulum and its period of oscillation. From an analysis of its solutions we conclude that there could be as many as three distinct mass configurations for which the periods of small oscillations about the two pivots of the pendulum have the same value. We also discuss a real compound Kater pendulum that realizes this property.
Publisher

Journal
Year
Volume
3
Issue
4
Pages
636-659
Physical description
Dates
published
1 - 12 - 2005
online
1 - 12 - 2005
Contributors
author
  • Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, 10123, Torino, Italy, michele.rossi@unito.it
  • Dipartimento di Fisica Generale, Università degli Studi di Torino, via P. Giuria 1, 10125, Torino, Italy, zaninetti@ph.unito.it
References
  • [1] D. Randall Peters: “Student-friendly precision pendulum”, Phys. Teach., Vol. 37, (1999), pp. 390–393. http://dx.doi.org/10.1119/1.880328[Crossref]
  • [2] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part I. Theoretical considerations”, Phys. Rev. (Series I), Vol. 25, (1907), pp 274–293. http://dx.doi.org/10.1103/PhysRevSeriesI.25.274[Crossref]
  • [3] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part II. Experimental verifications”, Phys. Rev. I, Vol. 34, (1912), pp. 110–124.
  • [4] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part III. A critique of captain Kater's paper of 1818”, Phys. Rev. I, Vol. 457, (1913), pp 457–462. http://dx.doi.org/10.1103/PhysRev.1.457[Crossref]
  • [5] D. Candela, K.M. Martini, R.V. Krotkov and K.H. Langley: “Bessel's improved Kater pendulum in the teaching lab”, Am. J. Phys., Vol. 69, (2001), pp. 714–720. http://dx.doi.org/10.1119/1.1349544[Crossref]
  • [6] R. Resnick, D. Halliday, K.S. Krane:Physics, John Wiley & Sons, New York, 1991.
  • [7] J. Harris:Algebraic Geometry, Springer-Verlag, New York, 1992.
  • [8] I.R. Shafarevich:Basic Algebraic Geometry, Springer-Verlag, New York, 1977.
  • [9] R.A. Nelson and M.G. Olsson: “The pendulum-rich physics from a simple system”, Am. J. Phys., Vol. 54, (1986), pp. 112–121. http://dx.doi.org/10.1119/1.14703[Crossref]
  • [10] G. Cerutti and P. DeMaria: “Misure assolute dell' accelerazione di gravità a Torino”, In:Rapporto Tecnico Interno, R432, Istituto di Metrologia “G.Colonnetti”, Torino, 1996.
  • [11] P.R. Bevington and D. Keith Robinson:Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Inc., New York, 1992.
  • [12] P. Moreland: “Improving precision and accuracy in the glab”, Phys. Teach., Vol. 38, (2000), pp 367–369. http://dx.doi.org/10.1119/1.1321823[Crossref]
  • [13] NAG, http://www.nag.co.uk/
  • [14] Numerical Recipes, http://www.nr.com/
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475618
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.