Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2005 | 3 | 4 | 636-659

Article title

The cubic period-distance relation for the Kate reversible pendulum

Content

Title variants

Languages of publication

EN

Abstracts

EN
We describe the correct cubic relation between the mass configuration of a Kater reversible pendulum and its period of oscillation. From an analysis of its solutions we conclude that there could be as many as three distinct mass configurations for which the periods of small oscillations about the two pivots of the pendulum have the same value. We also discuss a real compound Kater pendulum that realizes this property.

Publisher

Journal

Year

Volume

3

Issue

4

Pages

636-659

Physical description

Dates

published
1 - 12 - 2005
online
1 - 12 - 2005

Contributors

author
  • Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, 10123, Torino, Italy
  • Dipartimento di Fisica Generale, Università degli Studi di Torino, via P. Giuria 1, 10125, Torino, Italy

References

  • [1] D. Randall Peters: “Student-friendly precision pendulum”, Phys. Teach., Vol. 37, (1999), pp. 390–393. http://dx.doi.org/10.1119/1.880328[Crossref]
  • [2] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part I. Theoretical considerations”, Phys. Rev. (Series I), Vol. 25, (1907), pp 274–293. http://dx.doi.org/10.1103/PhysRevSeriesI.25.274[Crossref]
  • [3] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part II. Experimental verifications”, Phys. Rev. I, Vol. 34, (1912), pp. 110–124.
  • [4] J.C. Shedd and J.A. Birchby: “A study of the reversible pendulum. Part III. A critique of captain Kater's paper of 1818”, Phys. Rev. I, Vol. 457, (1913), pp 457–462. http://dx.doi.org/10.1103/PhysRev.1.457[Crossref]
  • [5] D. Candela, K.M. Martini, R.V. Krotkov and K.H. Langley: “Bessel's improved Kater pendulum in the teaching lab”, Am. J. Phys., Vol. 69, (2001), pp. 714–720. http://dx.doi.org/10.1119/1.1349544[Crossref]
  • [6] R. Resnick, D. Halliday, K.S. Krane:Physics, John Wiley & Sons, New York, 1991.
  • [7] J. Harris:Algebraic Geometry, Springer-Verlag, New York, 1992.
  • [8] I.R. Shafarevich:Basic Algebraic Geometry, Springer-Verlag, New York, 1977.
  • [9] R.A. Nelson and M.G. Olsson: “The pendulum-rich physics from a simple system”, Am. J. Phys., Vol. 54, (1986), pp. 112–121. http://dx.doi.org/10.1119/1.14703[Crossref]
  • [10] G. Cerutti and P. DeMaria: “Misure assolute dell' accelerazione di gravità a Torino”, In:Rapporto Tecnico Interno, R432, Istituto di Metrologia “G.Colonnetti”, Torino, 1996.
  • [11] P.R. Bevington and D. Keith Robinson:Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Inc., New York, 1992.
  • [12] P. Moreland: “Improving precision and accuracy in the glab”, Phys. Teach., Vol. 38, (2000), pp 367–369. http://dx.doi.org/10.1119/1.1321823[Crossref]
  • [13] NAG, http://www.nag.co.uk/
  • [14] Numerical Recipes, http://www.nr.com/

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475618
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.