PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2005 | 3 | 2 | 303-323
Article title

Solutions of the Schrödinger equation for Dirac delta decorated linear potential

Content
Title variants
Languages of publication
EN
Abstracts
EN
We have studied bound states of the Schrödinger equation for a linear potential together with any finite number (P) of Dirac delta functions. Forx [...] where 0f; 0x 1x 2x P , theσ i are arbitrary real numbers, and the potential is infinite forx
Publisher

Journal
Year
Volume
3
Issue
2
Pages
303-323
Physical description
Dates
published
1 - 6 - 2005
online
1 - 6 - 2005
Contributors
author
  • Physics Department, Bogazici University, Bebek, 34342, Istanbul, Turkey, uncu@boun.edu.tr
author
author
  • Physics Department, Bogazici University, Bebek, 34342, Istanbul, Turkey, bekerh@boun.edu.tr
References
  • [1] W. Greiner and B. Müller:Quantum Mechanics: Symmetries, 2nd revised Ed., Springer-Verlag, Berlin, 1994.
  • [2] B. Govoreanu, P. Blomme, M. Rosmeulen, V.J. Houdt and K. De Meyer: “A model for tunneling current in multi-layer tunnel dielectrics”, Solid State Electronic, Vol. 47, (2003), pp. 1045–1053. http://dx.doi.org/10.1016/S0038-1101(02)00514-2[Crossref]
  • [3] P. Fendley: “Airy Functions in Thermodynamics Bethe Ansatz”Lett. Math. Phys. Vol. 49, (1999), pp. 229–233. http://dx.doi.org/10.1023/A:1007658622109[Crossref]
  • [4] J.Z. Imbrie: “Dimensional reduction and crossover to mean-field behavior for branched polymers”, Ann. Henri Poincare, Vol. 4, (2003), pp. 445–458. http://dx.doi.org/10.1007/s00023-003-0935-9[Crossref]
  • [5] S. Flügge:Practical Quantum Mechanics, Springer, New York, 1974.
  • [6] S. Alveberio, F. Gesztsy, P. Høegh-Krohn and H. Holden:Solvable Models in Quantum Mechanics, Springer, New York, 1988.
  • [7] E. Demiralp and H. Beker: “Properties of bound states of the Schrödinger equation with attractive Dirac delta potentials”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 7449–7459. http://dx.doi.org/10.1088/0305-4470/36/26/315[Crossref]
  • [8] C. Cohen-Tannoudji, B. Diu and F. Laloë:Quantum Mechanics I, Hermann, Paris, 1977.
  • [9] C. Kittel:Introduction to Solid State Physics, 7th Ed., John Wiley, New York, 1996.
  • [10] T. Uchino and I. Tsutsui: “Supersymmetric quantum mechanics under point singularities”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 6821–6846. http://dx.doi.org/10.1088/0305-4470/36/24/318[Crossref]
  • [11] J.R. Barker: “The physics and fabrication of microstructures and microdevices”, In: M.S. Kelly and C. Weisbuch (Eds.):Proceedings in Physics, 13 Springer: New York, 1986, pp. 210–220.
  • [12] W. Ellberfeld and M. Kleber:Zeitschrift für Physik B, Vol. 73, (1988), pp. 23–32. http://dx.doi.org/10.1007/BF01312151[Crossref]
  • [13] G. Álvarez and B. Sundaram: “Perturbation theory for the Stark effect in a double δ quantum well”, J. Phys. A: Math. Gen., Vol. 37, (2004), pp. 9735–9748. http://dx.doi.org/10.1088/0305-4470/37/41/009[Crossref]
  • [14] C. Weisbuch and B. Vinter:Quantum Semiconductor Structures: fundamentals and Applications, Academic Press, San Diego, 1991.
  • [15] S.B. Monozon, V.M. Ivanov and P. Schmelcher: “Impurity center in a semiconductor quantum ring in the presence of a radial electric field”, Physical Review B, Vol. 70, (2004), pp. 205336–205347. http://dx.doi.org/10.1103/PhysRevB.70.205336[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475594
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.