Preferences help
enabled [disable] Abstract
Number of results
2005 | 3 | 2 | 258-269
Article title

Super-energy and Killing-Yano tensors

Title variants
Languages of publication
In this paper we investigate a class of basic super-energy tensors, namely those constructed from Killing-Yano tensors, and give a generalization of super-energy tensors for cases when we start not with a single tensor, but with a pair of tensors.
Physical description
1 - 6 - 2005
1 - 6 - 2005
  • [1] L. Bel: “Sur la radiation gravitationnelle”, C. R. Acad. Sci., Vol. 247, (1958), pp. 1094–1096.
  • [2] L. Bel: “Introduction d’un tenseur du quatrième ordre”, C. R. Acad. Sci., Vol. 248, (1959), pp. 1297–1300.
  • [3] H. Friedrich: “Hyperbolic reductions for Einstein’s equations”, Class. Quant. Grav., Vol. 13, (1996), pp. 1451–1469.[Crossref]
  • [4] O.A. Reula: “Hyperbolic Methods for Einstein’s Equations”, Living Reviews, (1998), http://www.Living
  • [5] A. Anderson, Y. Choquet-Bruhat and J.W. York Jr.: “Einstein-Bianchi Hyperolic System for General Relativity”, Topol. Meth. Nonlin. Anal., Vol. 10, (1997), pp. 353–375.
  • [6] M.Á.G. Bonilla: “Symmetric hyperbolic systems for Bianchi equations”, Class. Quant. Grav., Vol. 15, (1998), pp. 2001–2005.[Crossref]
  • [7] G. Bergqvist and J.M.M. Senovilla: “On the causal propagation of fields”, Class. Quant. Grav., Vol. 16, (1999), pp. L55-L61.[Crossref]
  • [8] M.Á.G. Bonilla and J.M.M. Senovilla: “Very Simple Proof of the Causal Propagation of Gravity in Vacuum”, Phys. Rev. Lett., Vol. 78, (1997), pp. 783–786.[Crossref]
  • [9] Y. Choquet-Bruhat and J.W. York Jr.: “The Cauchy Problem”, Gen. Rel. Grav., Vol. 1, (1980), pp. 99–172.
  • [10] S.W. Hawking and G.F.R. Ellis:The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973.
  • [11] A. Rendall: “Local and Global Existence Theorems for the Einstein Equations”, Living Reviews, (1998),
  • [12] D. Christodoulou and S. Klainerman:The global non-linear stability of Minkowski space, Princeton Univ. Press, Princeton, 1993.
  • [13] M. Chevreton: “Sur le tenseur de superenergie du champ electromagnetique”, Nuovo Cimento, Vol. 34, (1964), pp. 901–913.[Crossref]
  • [14] R. Penrose and W. Rindler:Spinors and spacetime, Cambridge Univ. Press, Cambridge, 1986.
  • [15] J.M.M. Senovilla: “Super-energy tensors”, Class. Quant. Grav., Vol. 17, (2000), pp. 2799–2841.[Crossref]
  • [16] P. Teyssandier: “Can one generalize the concept of energy-momentum tensor?”, Ann. Found. L. de Broglie, Vol. 26, (2001), pp. 459–469.
  • [17] K. Yano: “Some Remarks on Tensor Fields and Curvature”, Ann. Math., Vol. 55, (1952), pp. 328–347.[Crossref]
  • [18] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten: “SUSY in the sky”, Nucl. Phys. B, Vol. 404, (1993), pp. 42–64.[Crossref]
  • [19] R. Penrose: “Naked singularities”, Ann. NY Acad. Sci., Vol. 224, (1973), pp. 125–134; R. Floyd:The dynamics of Kerr fields, Thesis (PhD), London University, 1973.
  • [20] D. Vaman and M. Visinescu: “Generalized Killing equations and Taub-NUT spinning space”, Phys. Rev. D, Vol. 54, (1996), pp. 1398–1402.[Crossref]
  • [21] G.W. Gibbons and P.J. Ruback: “The hidden symmetries of Taub-Nut and monopole scattering”, Phys. Lett. B, Vol. 188, (1987), pp. 226–230; G. W. Gibbons and P.J. Ruback: “The hidden symmetries of multi-centre metrics”, Commun. Math. Phys., Vol. 115, (1988), pp. 267–300.[Crossref]
  • [22] J.W. van Holten: “Supersymmetry and the geometry of Taub-NUT”, Phys. Lett. B, Vol. 342, (1995), pp. 47–52.[Crossref]
  • [23] D. Vaman and M. Visinescu: “Spinning particles in Taub-NUT space”, Phys. Rev. D, Vol. 57, (1998), pp. 3790–3793.[Crossref]
  • [24] M. Visinescu: “Generalized Taub-NUT metrics and Killing-Yano tensors”, J. Phys. A: Math. Gen., Vol. 33, (2000), pp. 4383–4391.[Crossref]
  • [25] D. Baleanu and S. Codoban: “Symmetries of the Taub-NUT dual metrics”, Gen. Rel. Grav., Vol. 31, (1999), pp. 497–509.[Crossref]
  • [26] D. Baleanu: “Symmetries of the dual metrics”, Int. Journ. Mod. Phys. D, Vol. 11, (2002), pp. 405–416.[Crossref]
  • [27] D. Baleanu and S. Baskal: “Killing-Yano symmetry for a class of spacetimes admitting parallel null 1-planes”, Int. J. Mod. Phys. A, Vol. 17, (2002), pp. 3737–3747.[Crossref]
  • [28] D. Vaman and M. Visinescu: “Supersymmetries and Constants of Motion in Taub-NUT Spinning Space”, Fortschr. Phys., Vol. 47, (1999), pp. 493–514.<493::AID-PROP493>3.0.CO;2-M[Crossref]
  • [29] B. Carter and R.G. McLeanaghan: “Generalized total angular momentum operator for the Dirac equation in curved space-time”, Phys. Rev. D, Vol. 19, (1979), pp. 1093–1097.[Crossref]
  • [30] Ion I. Cotaescu and M. Visinescu: “Symmetries of the Dirac operators associated with covariantly constant Killing-Yano tensors”, Class. Quant. Grav., Vol. 21, (2004), pp. 11–28.[Crossref]
  • [31] W. Dietz and R. Rüdiger: “Space-times admitting Killing-Yano tensors. I”, Proc. Royal Soc. London A, Vol. 375, (1981), pp. 361–378.
  • [32] W. Dietz and R. Rüdiger: “Space-times admitting Killing-Yano tensors. II”, Proc. Royal Soc. London A, Vol. 381, (1982), pp. 315–322.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.