Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 2 | 221-228

Article title

f-symbols in Robertson-Walker space-time


Title variants

Languages of publication



In a Robertson-Walker space-time, a spinning particle model is investigated. It is shown that in a stationary case a class of new structures called f-symbols exists ¢ Central European Science Journals. All rights reserved.










Physical description


1 - 6 - 2005
1 - 6 - 2005


  • Institute of Space Sciences, Atomistilor 409, P.O. Box MG 23, RO 077125, Magurele Bucharest, Romania
  • Institute of Space Sciences, Atomistilor 409, P.O. Box MG 23, RO 077125, Magurele Bucharest, Romania


  • [1] B. Carter: “Killing tensor quantum numbers and conserved currents in curved space”, Phys. Rev. D, Vol. 16, (1977), pp. 3395–3414. http://dx.doi.org/10.1103/PhysRevD.16.3395[Crossref]
  • [2] K. Yano: “Some remarks on tensor fields and curvature”, Ann. Math., Vol. 55, (1952), pp. 328–347. http://dx.doi.org/10.2307/1969782[Crossref]
  • [3] G.W. Gibbons and P.J. Ruback: “The Hidden Symmetries of Taub-NUT and Monopole Scattering”, Phys. Lett. B, Vol. 188, (1987), pp. 226–230. http://dx.doi.org/10.1016/0370-2693(87)90011-6[Crossref]
  • [4] G.W. Gibbons and P.J. Ruback: “The Hidden Symmetries of Multi Centre Metrics”, Commun. Math. Phys., Vol. 115, (1988), pp. 267–300. http://dx.doi.org/10.1007/BF01466773[Crossref]
  • [5] D. Vaman and M. Visinescu: “Spinning particles in Taub-NUT space”, Phys. Rev. D, Vol. 57, (1998), pp. 3790–3793. http://dx.doi.org/10.1103/PhysRevD.57.3790[Crossref]
  • [6] J.W. van Holten: “Supersymmetry and the Geometry of Taub-NUT”, Phys. Lett. B, Vol. 342, (1995), pp. 47–52. http://dx.doi.org/10.1016/0370-2693(94)01358-J[Crossref]
  • [7] R.H. Rietdijk:Applications of supersymmetric quantum mechanics, Thesis (PhD), University Amsterdam, 1992.
  • [8] R.H. Rietdijk and J.W. van Holten: “Generalised Killing equations and the symmetries of spinning space”, Class. Quant. Grav., Vol. 7, (1990), pp. 247–255. http://dx.doi.org/10.1088/0264-9381/7/2/017[Crossref]
  • [9] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten: “SUSY in the Sky”, Nucl. Phys. B, Vol. 404, (1993), pp. 42–64. http://dx.doi.org/10.1016/0550-3213(93)90472-2[Crossref]
  • [10] B. Carter and R.G. McLenaghan: “Generalized total angular momentum operator for the Dirac equation in curved space-time”, Phys. Rev. D, Vol. 19, (1979), pp. 1093–1097. http://dx.doi.org/10.1103/PhysRevD.19.1093[Crossref]
  • [11] M. Visinescu and I. Cotaescu: “Symmetries of the Dirac operators associated with covariantly constant Killing-Yano tensors”, Class. Quant. Grav., Vol. 21, (2004), pp. 11–28. http://dx.doi.org/10.1088/0264-9381/21/1/002[Crossref]
  • [12] M. Visinescu and I. Cotaescu: “Hierarchy of Dirac, Pauli and Klein-Gordon conserved operators in Taub-NUT background”, J. Math. Phys., Vol. 43, (2002), pp. 2978–2987. http://dx.doi.org/10.1063/1.1469669[Crossref]
  • [13] M. Visinescu and I. Cotaescu: “Dynamical algebra and Dirac quantum modes in Taub-NUT background”, Class. Quant. Grav., Vol. 18, (2001), pp. 3383–3394. http://dx.doi.org/10.1088/0264-9381/18/17/304[Crossref]
  • [14] V.V. Klishevich: “On the existence of the second Dirac operator in Riemannian space”, Class. Quant. Grav., Vol. 17, (2000), pp. 305–318. http://dx.doi.org/10.1088/0264-9381/17/2/303[Crossref]
  • [15] R. Penrose: “Naked Singularities”, Ann. N. Y. Acad. Sci., Vol. 224, (1973), pp. 125–134; R. Floyd:The Dynamics of Kerr Fields, Thesis (PhD), London University, 1973.
  • [16] G.S. Hall: “Killing-Yano Tensors in General Relativity”, Int. J. Theor. Phys., Vol. 26, (1987), pp. 71–81. http://dx.doi.org/10.1007/BF00672392[Crossref]
  • [17] L. Howarth:The Existence and Structure of Constants of Motion admited by Spherically Symmetric Static Space-times, Thesis (PhD), University of Hull, 1999.
  • [18] L. Howarth and C.D. Collinson: “Note on Killing Yano Tensors Admitted by Spherically Symmetric Static Space-Times”, Gen. Rel. Grav., Vol. 32(9), (2000), pp. 1845–1849. http://dx.doi.org/10.1023/A:1001940916000[Crossref]
  • [19] I. Hauser and R.J. Malhiot: “Spherically symmetric static space-time which admit stationary Killing tensors of rank two”, J. Math. Phys., Vol. 15, (1974), pp. 816–823. http://dx.doi.org/10.1063/1.1666736[Crossref]
  • [20] R.H. Rietdijk and J.W. van Holten: “Killing tensors and a new geometric duality”, Nucl. Phys. B, Vol. 472, (1996) pp. 427–446. http://dx.doi.org/10.1016/0550-3213(96)00206-4[Crossref]
  • [21] D. Baleanu and A. Karasu: “Lax Tensors, Killing Tensors and Geometric Duality”, Mol. Phys. Lett. A, Vol. 14, (1999), pp. 2587–2594. http://dx.doi.org/10.1142/S0217732399002716[Crossref]
  • [22] D. Baleanu and S. Baskal: “Dual Metrics for a Class of Radiative Spacetimes”, Mod. Phys. Lett. A, Vol. 16, (2001), pp. 135–142. http://dx.doi.org/10.1142/S0217732301003218[Crossref]
  • [23] D. Baleanu and S. Baskal: “Dual Metrics and Non-Generic Supersymmetries for a Class of Siklos Spacetimes”, Int. J. Mod. Phys. A, Vol. 17, (2002), pp 3737–3748. http://dx.doi.org/10.1142/S0217751X02011023[Crossref]
  • [24] F.C. Popa and O. Tintareanu-Mircea: in preparation.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.