Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2004 | 2 | 4 | 720-736

Article title

Hyperfine structure operator in the tensorial form of second quantization


Title variants

Languages of publication



The general tensorial form of the hyperfine interaction operator in the formalism of second quantization is presented. Both diagonal and off-diagnonal matrix elements of the above-mentioned operator are found using an approach based on a combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin) and a generalised graphical technique. This methodology allows us to account for correlation effects efficiently and, therefore, to study the hyperfine interactions in complex many-electron atoms, those with openf-shells included, in a practical manner. All this will lead us to design an efficient program for large scale calculations of hyperfine structure and isotope shift.










Physical description


1 - 12 - 2004
1 - 12 - 2004


  • Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108, Vilnius, Lithuania
  • Vilnius University Research Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108, Vilnius, Lithuania


  • [1] L. Armstrong: Theory of the Hyperfine Structure of Free Atoms, Wiley-Interscience, New York, 1971.
  • [2] Z.B. Rudzikas: Theoretical Atomic Spectroscopy (Many-Electron Atom), Cambridge University Press, Cambridge, 1997.
  • [3] J. Dembczynski, B. Arcimowicz, E. Stachowska and H. Rudnicka-Szuba: “Parametrization of two-body perturbation on atomic fine and hyperfine structure. The configuration 6p 3 in the Bismuth atom”, Z. Phys. A-Atoms and Nuclei, Vol. 310, (1983), pp. 27–36. http://dx.doi.org/10.1007/BF01433607[Crossref]
  • [4] P.G.H. Sandars and J. Beck: “Relativistic effects in many-electron hyperfine structure. I. Theory”, Proc. Roy. Soc. London, Vol. 289, (1965), pp. 97–107. http://dx.doi.org/10.1098/rspa.1965.0251[Crossref]
  • [5] I. Lindgren and J. Morrison.Atomic Many-Body Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
  • [6] J. Dembczynski, W. Ertmer, U. Johann and P. Unkel: “A new parametrization method for hyperfine interactions. Determination of nuclear quadrupole moments almost free of Sternheimer corrections”, Z. Phys. A-Atoms and Nuclei, Vol. 321, (1985), pp. 1–13. http://dx.doi.org/10.1007/BF01411937[Crossref]
  • [7] G. Gaigalas, Z. R. Rudzikas and C. F. Fischer: “An efficient approach for spinangular integrations in atomic structure calculations”, J. Phys. B, Vol. 30, (1997), pp. 3747–71. http://dx.doi.org/10.1088/0953-4075/30/17/006[Crossref]
  • [8] G. Gaigalas: “The library of subroutines for calculation of matrix elements of twoparticle operators for many-electron atoms”, Lithuanian Journal of Physics, Vol. 42, (2002), pp. 73–86. [physics/0405072]
  • [9] G. Gaigalas, S. Fritzsche, C.F. Fischer: “Program to calculate pure angular momentum coefficients in jj-coupling”, Comp. Phys. Commun., Vol., 139, (2001), pp. 263–78. http://dx.doi.org/10.1016/S0010-4655(01)00213-2[Crossref]
  • [10] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov and S. G. Porsev, “Using effective operators in calculating the hyperfine structure of atoms”, JETP, Vol. 87, (1998), pp. 885–890. http://dx.doi.org/10.1134/1.558736[Crossref]
  • [11] S.G. Porsev, Y.G. Rakhlina and M.G. Kozlov: “Calculation of hyperfine structure for ytterbium”, J. Phys. B: At. Mol. Phys., Vol. 32, (1999), pp. 1113–1120. http://dx.doi.org/10.1088/0953-4075/32/5/006[Crossref]
  • [12] G. Gaigalas: “Integration over spin-angular variables in atomic physics”, Lithuanian Journal of Physics, Vol. 39, (1999), pp. 79–105. [physics/0405078]
  • [13] P. Jönsson, C.-G. Wahlström and C. F. Fischer, “A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wave functions”, Comp. Phys. Commun., Vol. 74, (1993), pp. 399–414. http://dx.doi.org/10.1016/0010-4655(93)90022-5[Crossref]
  • [14] G. Gaigalas and G. Merkelis: “Application of the method of irreducible tensorial operators to study the expansion of stationary perturbation theory”, Acta Phys. Hungarica, Vol. 61, (1987), pp. 111–114.
  • [15] G. Gaigalas and Z.B. Rudzikas: “On the secondly quantized theory of many-electron atom”, J. Phys. B: At. Mol. Phys., Vol. 29, (1996), pp. 3303–3318. http://dx.doi.org/10.1088/0953-4075/29/15/007[Crossref]
  • [16] G. Gaigalas, Z. R. Rudzikas and C. F. Fischer: “Reduced coefficients (subcoefficients) of fractional parentage for p-, d-, and f-shells.”, Atomic Data and Nuclear Data Tables, Vol. 70, (1998), pp. 1–39. http://dx.doi.org/10.1006/adnd.1998.0782[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.