Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2004 | 2 | 4 | 636-644

Article title

Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

Content

Title variants

Languages of publication

EN

Abstracts

EN
The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

Publisher

Journal

Year

Volume

2

Issue

4

Pages

636-644

Physical description

Dates

published
1 - 12 - 2004
online
1 - 12 - 2004

Contributors

author
  • Fermi National Accelerator Laboratory, P.O. Box 500, 60510-0500, Batavia, Illinois, USA
  • Department of Physics, University of Houston, 77204-5005, Houston, Texas, USA
author
  • Department of Physics, University of Houston, 77204-5005, Houston, Texas, USA
author
  • Department of Physics, University of Houston, 77204-5005, Houston, Texas, USA

References

  • [1] G.A. Morton and E.G. Ramberg: “Point projector electromicroscope”, Phys. Rev., Vol. 56, (1939), p. 705. http://dx.doi.org/10.1103/PhysRev.56.705[Crossref]
  • [2] E.W. Müller: “Field Ionization and Field Ion Microscopy”, Advances in Electronics and Electron Physics, Vol. 13, (1960), pp. 83–179.
  • [3] H.-W. Fink, W. Stocker and H. Schmid: “Holography with low energy electrons”, Phys. Rev. Lett., Vol. 65, (1990), pp. 1204–1206. http://dx.doi.org/10.1103/PhysRevLett.65.1204[Crossref]
  • [4] V.T. Binh and V. Semet: “Low energy-electron diffraction by nano-objects in projection microscopy without magnetic shielding”, Appl. Phys. Lett., Vol. 65, (1994), pp. 2493–2495. http://dx.doi.org/10.1063/1.112648[Crossref]
  • [5] Ch. Adessi, M. Devel, V.T. Binh, Ph. Lambin and V. Meunier: “Influence of structural defects on Fresnel projection microscope images of carbon nanotubes: Implications for the characterization of nanoscale devices”, Phys. Rev. B, Vol. 61, (2000), pp. 13385–13389. http://dx.doi.org/10.1103/PhysRevB.61.R13385[Crossref]
  • [6] D. Gabor: “A New Microscopic Principle”, Nature, Vol. 161, (1948), pp. 777–778.
  • [7] E. Hecht and A. Zajac: Optics, 2nd Ed., Addison-Wesley, Menlo Park, California, 1975.
  • [8] A. Mayer: “Electronic diffraction tomography by Green’s functions and by singular value decompositions”, Phys. Rev. B, Vol. 63, (2001), pp. 035408–035413. http://dx.doi.org/10.1103/PhysRevB.63.035408[Crossref]
  • [9] H.J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink andH. Schmid: “Theory of the Point Source Electron Microscope”, Ultramicroscopy, Vol. 45, (1992), pp. 381–403. http://dx.doi.org/10.1016/0304-3991(92)90150-I[Crossref]
  • [10] J.B. Tiller, A. Barty, D. Paganin and K.A. Nugent: “The Holographic twin image problem: a Deterministic phase solution”, Optics Communications, Vol. 183, (2000), pp. 7–14. http://dx.doi.org/10.1016/S0030-4018(00)00852-X[Crossref]
  • [11] J.R. Broach, J.R. Pringle and E.W. Jones: The Molecular and Cellular Biology of the Yeast Saccharomyces, Cold Spring Harbor Laboratory Press, 1991.
  • [12] C. Prodan and E. Prodan: “The dielectric behaviour of living cell suspensions”, J. Phys. D: Appl. Phys., Vol. 32, (1999), pp. 335–343. http://dx.doi.org/10.1088/0022-3727/32/3/022[Crossref]
  • [13] H. Fröhlich: “Long Range Coherence and Energy Storage in Biological Systems”, Int. J. Quant. Chem., Vol. II, (1968), pp. 641–649. http://dx.doi.org/10.1002/qua.560020505[Crossref]
  • [14] H. Fröhlich: “Long Range Coherence and the Action of Enzymes”, Nature, Vol. 228, (1970), p. 1093. http://dx.doi.org/10.1038/2281093a0[Crossref]
  • [15] H. Fröhlich: “The extraordinary dielectric properties of biological materials and the action of enzymes”, Proc. Natl. Acad. Sci. USA, Vol. 72, (1975), pp. 4211–4215. http://dx.doi.org/10.1073/pnas.72.11.4211[Crossref]
  • [16] H. Fröhlich: “Coherent excitations in active biological systems”, In: F. Guttman and H. Keyzer (Eds.): Modern Biochemistry, Plenum Press, New York, 1986.
  • [17] N.E. Mavromatos andD.V. Nanopoulos: “Quantum Brain?”, Int. J. Mod. Phys. B12, (1998), pp. 517–542. http://dx.doi.org/10.1142/S0217979298000326[Crossref]
  • [18] B. Julsgaard, A. Kozhekin andE.S. Polzik: “Experimental long-lived entanglement of two macroscopic objects”, Nature, Vol. 413, (2001), pp. 400–403. http://dx.doi.org/10.1038/35096524[Crossref]
  • [19] E. Altewischer, M.P. van Exter andJ.P. Woerdman: “Plasmon-assisted transmission of entangled photons”, Nature, Vol. 418, (2002), pp. 304–306. http://dx.doi.org/10.1038/nature00869[Crossref]
  • [20] W. Barnes: “Survival of the entanglement”, Nature, Vol. 418, (2002), pp. 281–282. http://dx.doi.org/10.1038/418281a[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_BF02475566
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.