PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2003 | 1 | 1 | 179-190
Article title

Computational determination of radiation damage effects on DNA structure

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Molecular dynamics (MD) studies of several radiation originated lesions on the DNA molecules are presented. The pyrimidine lesions (cytosinyl radical, thymine dimer, thymine glycol) and purine lesion (8-oxoguanine) were subjected to the MD simulations for several hundred picoseconds using MD simulation code AMBER 5.0 (4.0). The simulations were performed for fully dissolved solute molecules in water. Significant structural changes in the DNA double helical structure were observed in all cases which may be categorized as: a) the breaking of hydrogen bonds network between complementary bases and resulted opening of the double helix (cytosinyl, radical, 8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flippingout of adenine on the strand complementary to the lesion (8-oxoguanine). These changes related to the overall collapsing of the double helical structure around the lesion, are expected to facilitate the docking of the repair enzyme into the DNA in the formation of DNA-enzyme complex. The stable DNA-enzyme complex is a necessary condition for the onset of the enzymatic repair process. In addition to structural changes, specific values of electrostatic interaction energy were determined at several lesion sites (thymine dimer, thymine glycol and 8-oxoguanine). This lesion-specific electrostatic energy is a factor that enables repair enzyme to discriminate lesion from the native site during the scanning of the DNA surface.
Publisher
Journal
Year
Volume
1
Issue
1
Pages
179-190
Physical description
Dates
published
1 - 3 - 2003
online
1 - 3 - 2003
References
  • [1] Harrison, S. and Aggarwal, A., Annu. Rev. Biochem. 59 (1990) 933. http://dx.doi.org/10.1146/annurev.bi.59.070190.004441[Crossref]
  • [2] Gicquel-Sanzey, B. and Cossart, P., EMBO J. 1 (1982) 591.
  • [3] Ham, J., Thompson, A., Nedham, M., Webb, P. and Parker, M., Nucleic Acid Res. 16:12 (1988) 5263.
  • [4] Beato, M., Cell 56 (1989) 335 http://dx.doi.org/10.1016/0092-8674(89)90237-7[Crossref]
  • [5] Harris, L., Sullivan, M. and Hickok, D., Computers and Mathematics with Applications 20 (1990) 25. http://dx.doi.org/10.1016/0898-1221(90)90312-8[Crossref]
  • [6] Marx, J., Science 229 (1985) 846. http://dx.doi.org/10.1126/science.2992087[Crossref]
  • [7] Matthews, B., Nature 335 (1988) 294. http://dx.doi.org/10.1038/335294a0[Crossref]
  • [8] Harris, L., Sulliwan, M. and Hickok, D., Proc. Natl. Acad. Sci. USA 90 (1993) 5534. http://dx.doi.org/10.1073/pnas.90.12.5534[Crossref]
  • [9] Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheathman III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Ferguson, D.M., Radmer, R.J., Seibel, G.L., Weiner, P.K. and Kollman, P.A., AMBER 5.0, (1997) University of California San Francisco.
  • [10] Smith, P.E. and Petit, B.M., J. Chem. Phys., 105 (1996) 4289. http://dx.doi.org/10.1063/1.472246[Crossref]
  • [11] Pinak, M., Yamaguchi, H. and Osman, R., J. Radiat. Res. 37 (1996) 20. http://dx.doi.org/10.1269/jrr.37.20[Crossref]
  • [12] Pinak, M., J. Mol. Struct.: THEOCHEM 466 (1999) 219. http://dx.doi.org/10.1016/S0166-1280(98)00513-2[Crossref]
  • [13] Pinak, M., J. Mol. Struct.: THEOCHEM 499 (2000) 57. http://dx.doi.org/10.1016/S0166-1280(99)00277-8[Crossref]
  • [14] Pinak, M., JAERI-research 2001-038, (2001).
  • [15] Pinak, M., J. Comput. Chem. Vol. 22, Iss.15 (2001) 1723. http://dx.doi.org/10.1002/jcc.1127[Crossref]
  • [16] Pinak, M.J. Mol. Struct.: THEOCHEM 583/1-3 (2002) 189.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_BF02475560
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.