Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2005 | 3 | 4 | 803-829

Article title

Preparation of a set of selectively protected disaccharides for modular synthesis of heparan sulfate fragments: toward the synthesis of several O-sulfonated [β-D-GlcUA-(1→4)-β-D-GlcNAc]OPr types



Title variants

Languages of publication



A concise method for a stereocontrolled synthesis of a set of selectively protected disaccharides is reported. Coupling of the donor 11 onto acceptors 23 and 24, promoted by trimethylsilyl triflate-N-iodosuccinimide (TMSOTf-NIS), generated the disaccharides 25 and 26. Under typical conditions, condensation of the fully protected donor 12 onto acceptors 23 and 24 produced the disaccharides 27 and 28. The building blocks 25–28 were prepared in moderate yields having exclusive β-stereoselectivity. A unique pattern of protecting groups distinguished clearly between positions to be sulfated and functional groups remaining as free hydroxyl groups. Acetyl and/or levulinoyl esters temporarily protected the positions to be sulfated, while benzyl ethers were used for permanent protection. The anomeric positions were protected as allyl ethers, whereas the 4′-positions were masked as p-methoxybenzyl (PMB) ethers. The orthogonality of the PMB and allyl groups can then be used for further elongation of the chain by recurrent deprotection and activation steps. The hydroxyl group, OH-6, of glucosamine moieties was protected as a TBDPS ether to avoid oxidation. A five-step deprotection/sulfonation sequence was applied to the disaccharide 27 to generate the corresponding sulfated [β-D-GlcUA-2-OSO3Na-(1→4)-β-D-Glc pNAc]-(1→O-Pro) 34.










Physical description


1 - 12 - 2005
1 - 12 - 2005


  • Chemistry Department, Faculty of Science, Alexandria University, 21321 Alexandria, P O. Box 426, Ibrahimia, Egypt


  • [1] H.V. Patel, A.A. Vyas, K.A. Vyas, Y.S. Liu, C.M. Chiang, L.M. Chi and W. Wu: “Heparin and Heparan Sulfate Bind to Snake Cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action”, J. Biol. Chem., Vol. 272, (1997), pp. 1484–1492. http://dx.doi.org/10.1074/jbc.272.3.1484[Crossref]
  • [2] J.D. Esko and S.B. Selleck: “Order out of chaos: Assembly of Ligand Binding Sites in Heparan Sulfate”, Annu. Rev. Biochem., Vol. 71, (2002), pp. 435–471. http://dx.doi.org/10.1146/annurev.biochem.71.110601.135458[Crossref]
  • [3] H.E. Conrad: Heparin-Binding Proteins, Academic Press, San Diego, USA, 1998.
  • [4] R.L. Jackson, S.J. Busch and A.D. Cardin: “Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes”, Physiol. Rev., Vol. 71, (1991), pp. 481–539.
  • [5] R.J. Linhardt and Y. Toida: “Heparin Analogs-Development and Applications”, In: Z. Witczak and K. Nieforth (Eds.): Carbohydrates in Drug Design, Marcel Dekker, New York, 1997, p 277–341.
  • [6] F. Chevalier, R. Lucas, J. Angulo, M.M. Lomas and P.M. Nieto: “The heparin-Ca2| interaction: the influence of the O-sulfation pattern on binding”, Carbohydr. Res., Vol. 339, (2004), pp. 975–983. http://dx.doi.org/10.1016/j.carres.2003.12.023[Crossref]
  • [7] J.D. Esko and U. Lindhal: “Molecular diversity of heparan sulfate”, J. Clin. Invest., Vol. 108, (2001), pp. 169–173. http://dx.doi.org/10.1172/JCI200113530[Crossref]
  • [8] A.M. Clement, K. Sugahara and A. Faissner: “Chondroitin sulfate E promotes neurite outgrowth of rat embryonic day 18 hippocampal neurons”, Neurosci. Lett., Vol. 269 (1999), pp. 125–128. http://dx.doi.org/10.1016/S0304-3940(99)00432-2[Crossref]
  • [9] J.E. Turnbull and J.T. Gallagher: “Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure”, Biochem. J., Vol. 273, (1991), pp. 553–559.
  • [10] I. Capila and R.J. Linhardt: “Heparin-Protein-Wechselwirkungen”, Angew. Chem., Vol. 114. (2002), pp. 426–450; Angew. Chem. Int. Ed., Vol. 41, (2002), pp. 390–412. http://dx.doi.org/10.1002/1521-3757(20020201)114:3<426::AID-ANGE426>3.0.CO;2-Q[Crossref]
  • [11] R. Vive's, S. Goodger and D.A. Pye: “Combined strong anion-exchange HPLC and PAGE approach for the purification of heparan sulphate oligosaccharides”, Biochem. J., Vol. 354, (2001), pp. 141–147. http://dx.doi.org/10.1042/0264-6021:3540141[Crossref]
  • [12] U. Lindahl, G. Bäckström, L. Thunberg and I.G. Leder: “Evidence for a 3-O-sulfated D-glucosamine Residue in the Antithrombin-Binding Sequence of Heparin”, Proc. Natl. Acad. Sci. USA, Vol. 77, (1980), pp. 6551–6555. http://dx.doi.org/10.1073/pnas.77.11.6551[Crossref]
  • [13] B. Casu, P. Oreste, G. Torri, G. Zoppetti, J. Choay, J.C. Lormeau, M. Petitou and P. Sinaÿ: “The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear-magnetic-resonanc studies”, Biochem. J., Vol. 197, (1981), pp. 599–609.
  • [14] R. Sadir, F. Baleux, A. Grosdidier, A. Imberty and H.L. Jacob: “Characterization of the Stromal Cell-derived Factor-1-Heparin Complex”, J. Biol. Chem. Vol. 276, (2001), pp. 8288–8296. http://dx.doi.org/10.1074/jbc.M008110200[Crossref]
  • [15] C.A.A. van Boeckel and M. Petitou: “The Unique Antithrombin III Binding Domain of Heparin: A Lead to New Synthetic Antithrombotics”, Angew. Chem. Int. Ed. Engl. Vol. 32, (1993), pp. 1671–1690. http://dx.doi.org/10.1002/anie.199316713[Crossref]
  • [16] R.R. Vivos, R. Sadir, A. Imberty, A. Rencurosi and J.H. Jacob: “A Kinetics and Modeling Study of RANTES(9-68) Binding to Heparin Reveals a Mechanism of Cooperative Oligomerization”, Biochemistry, Vol. 41, (2002), pp. 14779–14789. http://dx.doi.org/10.1021/bi026459i[Crossref]
  • [17] S.E. Stringer, M.J. Forster, B. Mulloy, C.R. Bishop, G.J. Graham and J.T. Gallagher: “Characterization of the binding site on heparan sulfate for macrophage inflammatory protein 1α”, Blood, Vol. 100, (2002), pp. 1543–1550.
  • [18] R.R. Vives, D.A. Pye, M. Salmivirta, J.J. Hopwood, U. Lindahl and J.T. Gallagher: “Sequence analysis of heparan sulphate and heparin oligosaccharides”, Biochem. J., Vol. 339, (1999), pp. 767–773. http://dx.doi.org/10.1042/0264-6021:3390767[Crossref]
  • [19] H.N. Yu, J.I. Furukawa, T. Ikeda and C.H. Wong: “Novel Efficient Routes to Heparin Monosaccharides and Disaccharides Achieved via Regio- and Stereoselective Glycosidation”, Org. Lett., Vol. 6, (2004), pp. 723–726. http://dx.doi.org/10.1021/ol036390m[Crossref]
  • [20] A. Lubineau, H.L. Jacob, O. Gavard, S. Sarrazin and D. Bonnaffé: “Synthesis of Tailor-Made Glycoconjugate Mimetics of Heparan Sulfate That Bind IFN-g in the Nanomolar Range”, Chem. Eur. J., Vol. 10, (2004), pp. 4265–4282. http://dx.doi.org/10.1002/chem.200306063[Crossref]
  • [21] A. Prabhu, A. Venot and G.J. Boons: “New Set of Orthogonal Protecting Groups for the Modular Synthesis of Heparan Sulfate Fragments”, Org. Lett., Vol. 5, (2003), pp. 4975–4978. http://dx.doi.org/10.1021/ol0359261[Crossref]
  • [22] M. Haller and G.J. Boons: “Selectively protected disaccharide building blocks for modular synthesis of heparin fragments (Part 2)”, Eur. J. Org. Chem., Vol. 13, (2002), pp. 2033–2038. http://dx.doi.org/10.1002/1099-0690(200207)2002:13<2033::AID-EJOC2033>3.0.CO;2-W[Crossref]
  • [23] M. Haller and G.J. Boons: “Toward a modular approach for heparin synthesis”, J. Chem. Soc., Perkin Trans. 1, (2001), pp. 814–822. [Crossref]
  • [24] P.G. Wang and C.R. Bertozzi (Eds.): Glycochemistry, Marcel Dekker, New York, 2001, pp. 425–492.
  • [25] H.A. Orgueira, A. Bartolozzi, P. Schell, R.E.J.N. Litjens, E.R. Palmacci and P.H. Seeberger: “Modular Synthesis of Heparin Oligosaccharides”, Chem. Eur. J., Vol. 9, (2003), pp. 140–169. http://dx.doi.org/10.1002/chem.200390009[Crossref]
  • [26] L. Poletti and L. Lay: “Chemical Contributions to Understanding Heparin Activity: Synthesis of Related Sulfated Oligosaccharides”, Eur. J. Org. Chem., (2003), pp. 2999–3024. [Crossref]
  • [27] O. Gavard, Y. Hersant, J. Alais, V. Duverger, A. Dilhas, A. Bascou and D. Bonnaffé: “Efficient Preparation of Three Building Blocks for the Synthesis of Heparan Sulfate Fragments: Towards the Combinatorial Synthesis of Oligosaccharidesfrom Hypervariable Regions”, Eur. J. Org. Chem., (2003), pp. 3603–3620. [Crossref]
  • [28] N. Karst and J.C. Jacquinet: “Stereocontrolled Total Syntheses of Shark Cartilage Chondroitin Sulfate and Related Tetra- and Hexasaccharide Methyl Glycosides”, Eur. J. Org. Chem. (2002), pp. 815–825. [Crossref]
  • [29] L. Chan and F. Kong: “A practical synthesis of β-D-GlcA-(1→3)-β-D-Gal-(1→3)β-D-Gal-(1→4)-D-Xyl, a part of the common linkage region of a glycosaminoglycan”, Carbohydr. Res., Vol. 337, (2002), pp. 1373–1380. http://dx.doi.org/10.1016/S0008-6215(02)00169-6[Crossref]
  • [30] A. O'Brien, C. Lynch, K.M. O'Boyle and P.V. Murphy: “Synthesis of disaccharides derived from heparin and evaluation of effects on endothelial cell growth and on binding of heparin to FGF-2”, Carbohydr. Res., Vol. 339, (2004), pp. 2343–2354. http://dx.doi.org/10.1016/j.carres.2004.07.018[Crossref]
  • [31] W. Ke, D.M. Whitfield, J.R. Brisson, G. Enright, H.C. Jarrell and W.G. Wu: “Development of specific inhibitors for heparin-binding proteins based on the cobra cardiotoxin structure: an effective synthetic strategy for rationally modified heparinlike disaccharides and a trisaccharide”, Carbohydr. Res., Vol. 340, (2005), pp. 355–372. http://dx.doi.org/10.1016/j.carres.2004.11.029[Crossref]
  • [32] J.O. Hoberg: “Synthesis and Chemistry of 4,6-O-di-(tert-butyl)silanediyl-D-glucal”, Carbohydr. Res., Vol. 300, (1997), pp. 365–367. http://dx.doi.org/10.1016/S0008-6215(97)00068-2[Crossref]
  • [33] G.J. Boons, G.H. Castle, J.A. Clase, P. Grice, S.V. Ley and C. Pinel: “Selective Acylation and Alkylation Reactions of Diols Using Dibutyltin Dimethoxide”, Synlett, (1993), pp. 913–914. [Crossref]
  • [34] W. Kinzy and R.R. Schmidt: “Direct 3,6-di-O-protection of glucal and galactal”, Tetrahedron Lett., Vol. 28, (1987), pp. 1981–1983. http://dx.doi.org/10.1016/S0040-4039(00)96025-8[Crossref]
  • [35] R.L. Halcomb and S.L. Danishefsky: “On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of.beta.-linked oligosaccharides”, J. Am. Chem. Soc., Vol. 111, (1989), pp. 6661–6666. http://dx.doi.org/10.1021/ja00199a028[Crossref]
  • [36] R.W. Murray and R.J. Jeyaramen: “Dioxiranes: synthesis and reactions of methyldioxiranes”, J. Org. Chem., Vol. 50, (1985), pp. 2847–2853. http://dx.doi.org/10.1021/jo00216a007[Crossref]
  • [37] S.L. Danishefsky, S. Hu, P.F. Cirillo, M. Eckhardt and P.H. Seeberger: “Highly Convergent Synthetic Route to Glycopeptides Carrying a High Mannose Core Pentasaccharide Domain N-linked to a Natural Peptide Motif”, Chem. Eur. J., Vol. 3, (1997), pp. 1617–1628. [Crossref]
  • [38] Y. Bai, G.J. Boons, A. Burton, M. Johnson and M. Haller: “Vinyl glycosides in oligosaccharide synthesis: 3 buten-2-yl 2-azido-2-deoxy glycosides and 3-buten-2-ylphthalimido-2-deoxy glycosides as novel glycosyl Donors”, J. Carbohydr. Chem., Vol. 19, (2000), pp. 939–958 and references cited therein. http://dx.doi.org/10.1080/07328300008544127
  • [39] F.I. Auzanneau, M. Mondange, D. Charon and L. Szabo: “Synthesis of allyl 6-O-(3-deoxy-α- and-β-D-manno-oct-2-ulopyranosylonicacid)-(1→6)-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-β-D-glucopyranoside-4phosphate and of the copolymer of the α-anomer with acrylamide”, Carbohydr. Res., Vol. 228, (1992), pp. 37–45. http://dx.doi.org/10.1016/S0008-6215(00)90547-0[Crossref]
  • [40] P.B. Alper, S.C. Hung and C.H. Wong: “Metal catalyzed diazo transfer for the synthesis of azides from amines”, Tetrahedron Lett., Vol. 37, (1996), pp. 6029–6032. http://dx.doi.org/10.1016/0040-4039(96)01307-X[Crossref]
  • [41] T. Rosen, I.M. Lico and D.T.W. Chu: “A Convenient and Highly Chemoselective Method for the Reductive Acetylation of Azides”, J. Org. Chem., Vol. 53, (1988), pp. 1580–1582. http://dx.doi.org/10.1021/jo00242a051[Crossref]
  • [42] J. Kovensky, P. Duchaussoy, M. Petitou and P. Sinaÿ: “Binding of heparan sulfate to fibroblast growth factor-2 total synthesis of a putative pentasaccharide binding site”, Tetrahedron: Asymmetry, Vol. 7, (1996), pp. 3119–3128. http://dx.doi.org/10.1016/0957-4166(96)00412-0[Crossref]
  • [43] N.J. Davis and S.L. Flitsch: “Selective oxidation of monosaccharide derivatives to uronic acids”, Tetrahedron Lett., Vol. 34, (1993), pp. 1181–1184. http://dx.doi.org/10.1016/S0040-4039(00)77522-8[Crossref]
  • [44] A.E.J. de Nooy, A.C. Besemer and H. van Bekkum: “Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans”, Carbohydr. Res., Vol. 269 (1995), pp. 89–98. http://dx.doi.org/10.1016/0008-6215(94)00343-E[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.